Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:(i) `|a-b-c2a2a2bb-c-a2b2c2cc-a-b|=(a+b+c)^3` (ii) `|x+y+2z x y z y+z+2x y z x z+x+2y|=2(x+y+z)^3`

Text Solution

Verified by Experts

`|{:(a-b-c,2a,2a),(ab,b-c-a,2a),(2c,2c,c-a-b):}|=|{:(-(a+b+c),0,2a),(a+b+v,-(a+b+c),ab),(0,a+b+c,c-a-b):}|`
`(C_(1)toC_(1)-C_(2),C_(2)toC_(2)-C_(3))`
`=(a+b+c)^(2)|{:(-1,0,2a),(0,-1,2b+2a),(0,1,c-a-b):}|`
`(R_(2)toR_(2)+R_(1))`
`=(a+b+c)^(2).(-1)|{:(-1,2b+2a),(1,c-a-b):}|`
(Expanding along `C_(1)`)
`=(a+b+c)^(2)(-1)(-c+a+b-2a-ab)`
`=(a+b+c)^(2)(-1)(-a-b-c)`
`=(a+b+c)^(2)(a+b+c)`
`=(a+b+c)=R.H.S.`
`|{:(x+y+2s,x,y),(z,y+z+2z,y),(z,x,z+x+2y):}|=|{:(2x+2y+2z,x,y),(2x+2y+2z,y+z+2x,y),(2x+2y+2z,z,z+x+2y):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`=(2x+2y+2z)|{:(1,x,y),(1,y+z+2x,u),(1,x,z+x+2y):}|`
`=2(x+y+z)|{:(1,x,y),(1,y+z+2x,0),(0,0,x+y+z):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=2(x+y+z).1|{:(x+y+z,0),(0,x+y+z):}|`
(Expanding along `C_(1)`)
`=2(x+y+z)^(3)=R.H.S`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3 (ii) |[x+y+2z, x, y],[ z, y+z+2x, y],[ z, x, z+x+2y]|=2(x+y+z)^3

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

Show that |a b c a+2x b+2y c+2z x y z|=0

Show that |{:(x,y,z),(2x+2a,2y+2b,2z+2c),(a,b,c):}|=0

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.2
  1. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  2. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  6. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  7. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  8. By using properties of determinants. Show that:(i) |1a a^2 1bb^2 1cc^2...

    Text Solution

    |

  9. Using the properties of determinants, show that: [[x, x^2, yz],[y, y...

    Text Solution

    |

  10. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  11. By using properties of determinants. Show that:(i) |a-b-c2a2a2bb-c-a2b...

    Text Solution

    |

  12. Using properties of determinants, prove the following: |1xx^2x^2 1...

    Text Solution

    |

  13. By using properties of determinants. Show that:|1+a^2-b^2 2a b-2b2a b1...

    Text Solution

    |

  14. Using properties of determinants, prove the following: |[a^2 + 1,ab, ...

    Text Solution

    |

  15. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  16. Which of the following is correct (A) Determinant is a square matrix. ...

    Text Solution

    |