Home
Class 12
MATHS
Using properties of determinants, pro...

Using properties of determinants, prove the following: `|1xx^2x^2 1xxx^2 1|=(1-x^3)^2`

Text Solution

Verified by Experts

`L.H.S.=|{:(1,x,x^(2)),(x^(2),1,x),(x,x^(2),1):}|=|{:(1+x+x^(2),x,x^(2)),(x^(2)+1+x,1,x),(x+x^(2)+1,x^(2),1):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`=(1+x+x^(2))|{:(1,x,x^(2)),(1,1,x),(1,x^(2),1):}|`
`=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x-x^(2)),(0,x^(2)-x,1-x^(2)):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x(1-x)),(0,-x(1-x),(1-x)(1+x)):}|`
`=(1+x+x^(2))(1-x)(1-x)|{:(1,x,x^(2)),(0,1,x),(0,-x,1+x):}|`
`=(1+x+x^(2))(1-x).1|{:(1,x),(-x,1+x):}|`
`=(1+x+x^(2))(1-x)^(2)(1+x+x^(2))`
`=[(1+x+x^(2))(1-x)^(2)]=(1-x^(3))^(2)`
R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinants, prove the following: |[1,a,a^2],[a^2,1,a],[a,a^2,1]|=(1-a^3)^2

By using properties of determinants, prove the following: |x+4 2x2x2xx+4 2x2x2xx+4|=(5x+4)(4-x)^2

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove the following: |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=1

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.2
  1. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  2. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  6. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  7. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  8. By using properties of determinants. Show that:(i) |1a a^2 1bb^2 1cc^2...

    Text Solution

    |

  9. Using the properties of determinants, show that: [[x, x^2, yz],[y, y...

    Text Solution

    |

  10. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  11. By using properties of determinants. Show that:(i) |a-b-c2a2a2bb-c-a2b...

    Text Solution

    |

  12. Using properties of determinants, prove the following: |1xx^2x^2 1...

    Text Solution

    |

  13. By using properties of determinants. Show that:|1+a^2-b^2 2a b-2b2a b1...

    Text Solution

    |

  14. Using properties of determinants, prove the following: |[a^2 + 1,ab, ...

    Text Solution

    |

  15. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  16. Which of the following is correct (A) Determinant is a square matrix. ...

    Text Solution

    |