Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that `|a a^2b c bb^2c a cc^2a b|=|1a^2a^3 1b^2b^3 1c^2c^3|`

Text Solution

Verified by Experts

`[{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}]=(abc)/(abc)[{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}]`
`1/(abc)[{:(a^(2),a^(3),abc),(b^(2),b^(3),abc),(c^(2),c^(3),abc):}]`
`(R_(1)to,aR_(2)tobR_(2),R_(3)tocR_(3))`
`(abc)/(abc)[{:(a^(2),a^(3),1),(b^(2),b^(3),1),(c^(2),c^(3),1):}]=-[{:(1,a^(3),a^(2)),(1,b^(3),b^(2)),(1,c^(3),c^(2)):}](C_(1)hArrC_(3))`
`=-[{:(1,a^(3),a^(2)),(1,b^(3),b^(2)),(1,c^(3),c^(2)):}]" "(C_(2)hArrC_(3))`
R.H.S
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Miscellaneous Exercise
  1. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  2. Without expanding the determinant, prove that |a a^2b c bb^2c a cc^2a ...

    Text Solution

    |

  3. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  4. " if a,b, and c are real number and " |{:(b+c,,c+a,,a+b),(c+a,,a+b,...

    Text Solution

    |

  5. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  6. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  7. If A^(-1)=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate |x y x+y y x+y xx+y x y| .

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using properties of determinants. Prove that|alphaalpha^2beta+gammarho...

    Text Solution

    |

  12. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  13. show that |{:(3a,,-a+b,,-a+c),(-b+a ,,3b,,-b+c),( -c+a,, -c+b,,3c):}| ...

    Text Solution

    |

  14. Show that |(1, 1+p, 1+p+q), (2, 3+2p, 4+3p+2q), (3, 6+3p, 10+6p+3q)|=1...

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. Solve the system of equations2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(2...

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  19. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |