Home
Class 12
MATHS
Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. V...

Let `A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]`. Verify that ltbtgt (i) `[adjA]^(-1)=adj (A^(-1))`
(ii) `(A^(-1)^(-1)=A`

Text Solution

Verified by Experts

`A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]`
`therefore" "|A|=[{:(1,-2,1),(-2,3,1),(1,1,5):}]`
`=1(15-1)-(-2)(-10-1)+1(-2-3) `
`=14-22-5-13ne0`
`A_(11)=14, A_(12)=11, A_(13)=-5`
`A_(21)=11, A_(22)=4, A_(23)=-3`
`A_(31)=-5, A_(32)=-3, A_(33)=-1`
`therefore" "A=[{:(14,11,-5),(11,4,-3),(-5,-3,-1):}]=[{:(14,11,-5),(11,4,-3),(-5,-3,-1):}]`
`"and A"^(-1)=1/|A|="adj A"=-1/13[{:(14,11,-5),(11,4,-3),(-5,-3,-1):}]=[{:(-14/13,-11/13,5/13),(122/12,-4/13,3/13),(5/13,3/13,1/13):}]`
(i) `Let B = adj A=[{:(14,11,-5),(11,4,-3),(-5,-3,-1):}]rArr|B|=[{:(14,11,-5),(11,4,-3),(-5,-3,-1):}]`
=14(-4-9)=11(-11-15)-5(-33+20)
`=-182+286+65=169ne0`
`B_(11)=-13, B_(12)=26, B_(13)=-13`
`B_(21)=26, B_(22)=-39, B_(23)=-13`
`B_(31)=-13, B_(32)=-13, B_(33)=-65`
`therefore" adj B"=[{:(-13,26,-13),(26,-39,-13),(-13,-13,-65):}]=[{:(-13,26,-13),(26,-39,-13),(-13,-13,-65):}]`
`"andB"^(-1)=1/|B|"adj B="1/169[{:(-13,26,-13),(26,-39,-13),(-13,-13,-65):}]=1/13[{:(-1,2,-1),(1,-3,-1),(-1,-1,-5):}]`
`"Let C"=A^(-1)=[{:(-14/13,-11/13,5/13),(-11/13,-4/13,3/13),(5/13,3/13,1/13):}]`
`C_(11)=-13/169=-1/13,C_(12)=26/169=2/13, C_(13)=-13/169=-1/13`
`C_(21)=26/169=2/13, C_(22)=39/169=-3/13, C_(23)=-13/169=-1/13`
`C_(31)=-13/169=1/13, C_(32)=-13/169=-1/13, C_(33)=-65/169=-5/13`
`:."adjC=adjA"^(-1)=[{:(-1/13,2/13,-1/13),(2/13,-3/13,-1/13),(-1/13,-1/13,-5/13):}]=[{:(-1/13,2/13,-1/13),(2/13,-3/13,-1/13),(-1/13,-1/13,-5/13):}]`
`=1/13[{:(-1,2,-1),(2,-3,-1),(-1,-1,-5):}]`
(ii) `|A^(-1)|=14/13(=4/169-9/169)+11/13(-11/169-15/169)+5/13(-33/169+20/169)=1-1/13`
`therefore (A^(-1))^(-1)=1/|A^(-1)|"adj"(A^(-1))`
`1/(-1/13)-1/13[{:(-1,2,-1),(2,-3,-1),(-1,-1,-5):}]=[{:(1,-2,1),(2,3,1),(-1,1,5):}]=A`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

If A=[{:(,1,3,3),(,1,4,3),(,1,3,4):}] then verify that A adj A=|A| I. Also find A^(-1)

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A[{:(2,4,4),(2,5,4),(2,5,3):}] , then verify that A adjA = |A|l. Also find A^(-1) .

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A=[{:(,1,2),(,2,1):}] then adj A=

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Miscellaneous Exercise
  1. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  2. Without expanding the determinant, prove that |a a^2b c bb^2c a cc^2a ...

    Text Solution

    |

  3. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  4. " if a,b, and c are real number and " |{:(b+c,,c+a,,a+b),(c+a,,a+b,...

    Text Solution

    |

  5. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  6. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  7. If A^(-1)=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate |x y x+y y x+y xx+y x y| .

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using properties of determinants. Prove that|alphaalpha^2beta+gammarho...

    Text Solution

    |

  12. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  13. show that |{:(3a,,-a+b,,-a+c),(-b+a ,,3b,,-b+c),( -c+a,, -c+b,,3c):}| ...

    Text Solution

    |

  14. Show that |(1, 1+p, 1+p+q), (2, 3+2p, 4+3p+2q), (3, 6+3p, 10+6p+3q)|=1...

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. Solve the system of equations2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(2...

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  19. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |