Home
Class 12
MATHS
Find the shortest distance between the ...

Find the shortest distance between the lines whose vector equations are` -> r=(1-t) hat i+(t-2) hat j+(3-2t) hat k`and ` -> r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k`

Text Solution

Verified by Experts

Given equation of lines can be written as :
`vecr = (hati-2hatj+3hatk)+t(-hati+hatj-2hatk)`
and `vecr = (hati-hatj-hatk)+s(hati+2hatj-2hatk)`
Comparing these equation with `vecr = veca_(1)+tvecb_(1)` and `vecr = veca_(2)+ svecb_(2)`,
`veca_(1) = hati-2hatj+3hatk, vecb_(1)=-hati+hatj-2hatk`
and `veca_(2) = hati-hatj-hatk, vecb_(2)=hati+2hatj-2hatk`
Now, ` veca_(2)-veca_(1) = ( hati-hatj-hatk) - (hati-2hatj+3hatk)= hatj-4hatk`
and `vecb_(1)xxvecb_(2)=|{:(hati,hatj,hatk),(-1,1,-2),(1,2,2):}|`
`= (-2+4)hati-(2+2)hatj+(-2-1)hatk`
`= 2hati-4hatj-3hatk`
`rArr |vecb_(1)xxvecb_(2)|=sqrt((2)^(2)+(-4)^(2)+(-3)^(2))`
`= sqrt(4+16+9) = sqrt(29)`
`:.` Required shortest distance
`d=|{:(vecb_(1)xxvecb_(2)).(veca_(2)-veca_(1)))/(|vecb_(1)xxvecb_(2)|)|`
`=(|(2hati-4hatj-3hatk).(hatj-4hatk)|)/(sqrt(29))`
`= (|-4+12|)/(sqrt(29)) = (8)/(sqrt(29))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11.3|14 Videos
  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 H|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • VECTORS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following pairs of line whose vector equation are: vec r=(1-t) hat i+(t-2) hat j+(3-t) hat k a n d\ vec r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k

Find the shortest distance between the lines whose vector equations are -> r=( hat i+2 hat j+3 hat k)+lambda( hat i-3 hat j+2 hat k) and -> r=4 hat i+5 hat j+6 hat k+mu(2 hat i+3 hat j+ hat k) .

Find the shortest distance between the lines l1 and l2 whose vector equations are -> r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) (1)and -> r=2 hat i+ hat j-k+mu(3 hat i-5 hat j+2 hat k) (2)

Find the shortest distance between the lines whose vector equations are vec r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) and vec r=2 hat i+ hat j- hat k+mu(3 hat i-5 hat j+2 hat k)dot

Find the shortest distance between the lines whose vector equations are: vec r=2 hat i- hat j- hat k+lambda(2 hat i-5 hat j+2 hat k)a n d\ , vec r= hat i+2 hat j+ hat k+ mu( hat i- hat j+ hat k)dot

Find the shortest distance between the lines l1 and l2 whose vector equations are vecr= hat i+ hat j+lambda(2 hat i- hat j+ hat k) (1)and vecr=2 hat i+ hat j-k+mu(3 hat i-5 hat j+2 hat k) (2)

Find the shortest distance between the following pairs of line whose vector equation are: vec r=( hat i+2 hat j+3 hat k+lambda(2 hat i+3 hat j+4 hat k)a n d\ vec r=(2 hat i+4 hat j+5 hat k)+mu(3 hat i+4 hat j+5 hat k)

Find the shortest distance between the parallel lines whose equation are: vec r=hat i+2 hat j+3 hat k+lambda( hat i- hat j+ hat k)a n d\ vec r=2 hat i- hat j- hat k+mu(- hat i+ hat j- hat k)

Find the shortest distance between the parallel lines whose equation are: vec r= hat i+ hat j+lambda(2 hat i- hat j+ hat k)a n d\ vec r=2 hat i+ hat j- hat k+mu(4 hat i-2 hat j+2 hat k)

Find the shortest distance between the lines vec r=(1-lambda) hat i+(lambda-2) hat j+(3-2lambda) hat k and vec r=(mu+1) hat i+(2mu+1) hat kdot

NAGEEN PRAKASHAN ENGLISH-THREE-DIMENSIONAL GEOMETRY -Exercise 11.2
  1. Show that the three lines with direction cosines (12)/(13),(-3)/(13),...

    Text Solution

    |

  2. Show that the line through the points (1, -1, 2) and (3, 4,-2) is p...

    Text Solution

    |

  3. Show that the line through the points (4, 7, 8), (2, 3, 4)is parallel...

    Text Solution

    |

  4. Find the equation of the line which passes through the point (1, 2, 3...

    Text Solution

    |

  5. Find the equation of the line in vector and in cartesian form that ...

    Text Solution

    |

  6. Find the Cartesian equation of the line which passes through the point...

    Text Solution

    |

  7. The cartesian equation of a line is (x-5)/3=(y+4)/7=(z-6)/2. Write i...

    Text Solution

    |

  8. Find the vector and the cartesian equations of the lines that passes ...

    Text Solution

    |

  9. Find the vector and the cartesian equations of the line that passes t...

    Text Solution

    |

  10. Find the angle between the following pairs of lines. (i) hatr = 2hat...

    Text Solution

    |

  11. Find the angle between the following pair of lines: (x-2)/2=(y-1)/5=...

    Text Solution

    |

  12. Find the values of p so that the lines (1-x)/3=(7y-14)/(2p)=(z-3)/2an...

    Text Solution

    |

  13. Show that the lines (x-5)/7=(y+2)/(-5)=z/1and x/1=y/2=z/3are perpendi...

    Text Solution

    |

  14. Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+l...

    Text Solution

    |

  15. Find the shortest distance between the following lines: (x+1)/7=(y+1)...

    Text Solution

    |

  16. Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2ha...

    Text Solution

    |

  17. Find the shortest distance between the lines whose vector equations a...

    Text Solution

    |