Home
Class 12
MATHS
Suppose X has a binomial distribution B(...

Suppose X has a binomial distribution `B(6,""""1/2)` . Show that `X" "=" "3` is the most likely outcome. (Hint: `P(x=3)` is the maximum among all `P(x_i),""x_i=0,""1,""2,""3,""4,""5,""6)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `X` be a random variable whose binomial distribution is `B(6,1/2)`
Therefore `n=6` and `p=1/2`
and `q=1-p=1-1/2=1/2`
Then `P(X=r)=.^(6)C_(r).(1/2)^(r)(1/2)^(6-r)`
Here
`P(X=0)=.^(6)C_(0)p^(0)q^(6)=.^(6)C_(0)(1/2)^(6)=1/(2^(6))=1/64`
`P(X=1)=.^(6)C_(1)p^(1)q^(5)=6(1/2)(1/2)^(5)=6(1/(2^(6)))=6/64`
`P(X=2)=.^(6)C_(2)p^(2)q^(4)=(6xx5)/(1xx2).(1/2)^(2)(1/2)^(4)=15/64`
`P(X=3)=.^(6)C_(3)p^(3)q^(3)=(6xx5xx4)/(1xx2xx3)(1/2)^(3)(1/2)^(3)=20/64`
`P(X=4)=.^(6)C_(4)p^(4)q^(2)=.^(6)C_(2)(1/2)^(4)(1/2)^(2)=15/64`
`P(X=5)=.^(6)C_(5)p^(4)q^(1)=.^(6)C_(1).(1/2)^(5)(1/2)^(1)=6/64`
and `P(X=6)=.^(6)C_(6)p^(6)q^(0)=1xx(1/2)^(6)=1/64`
Clearly, the maximum value among all results is `20/64`
Therefore, `X=3` is the result with maximum probability.
Promotional Banner

Topper's Solved these Questions

  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 13.4|17 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If for a binomial distribution P(X=1)=P(X=2)=alpha, \ write \ P(X=4) in terms of alpha .

If X has a binomial distribution, B (n,p) with parameters n and p such that P(X=2)=P(X=3) , then E(X) , the mean of variable X , is

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X has binomial distribution with mean np and variance npq, then (P(X = r))/(P(X = r - 1)) is equal to

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is