Home
Class 10
MATHS
Represent the following situations in t...

Represent the following situations in the form of quadratic equations :(i) The area of a rectangular plot is 528 `m^2`. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plo

Text Solution

Verified by Experts

(i) Let the breadth of the plot = x m
Then, the length of the plot = (2x+1)m
Now, area of rectangle = length`xx`breadth
`:.(2x+1)x=528`
`implies2x^(2)+x-528=0`
which is the required quadratic equation.
(ii) Let the two consecutive positive integers be x and x+1
`:.x((x+1)=306`
`impliesx^(2)+x=306`
`implies2x^(2)+x-528=0`
which is the required quadratic equation.
(iii) Let the age of Rohan be x years
Then, his mother's age =(x + 26) years
After 3 years,
Rohan's age = (x + 3) years
Rohan's mother age = `[(x+26)+3)]=(x+29)` years
`:.(x+3)(x+29)=360`
`impliesx^(2)+29x+3x+87=360`
`impliesx^(2)+32x-273=0`
which is the required quadratic equation.
(iv) Let the speed of the train be x km/hr.
Distance travelled by the train =480 km
:. Time taken to travel 480 km `=(480)/(x)hr" "[:'"Speed"=("Distance")/("Time")]`
If the speed had beed 8 km/hr less i.e.,(x-8)km/hr
:. Time taken to travel 480 km `(480)/(x-8)hr` Now, according to given condition
`(480)/(x-8)-(480)/(x)=3`
`implies(480x-480x+3840)/(x(x-8))=3implies3840=3x(x-8)`
`implies3840=3x^(3)-24x`
`implies3x^(2)-24x-3840=0`
`impliesx^(2)-8x-1280=0`
which is the required quadratic equation.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT /exemplar|17 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4a|37 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

The area of a rectangular plot is 528m^2dot The length of the plot (in metres) is one metre more then twice its breadth. Find the length and the breadth of the plot.

The area of a rectangular plot is 528\ m^2 . The length of the plot (in metres) is one more than twice its breadth. Formulate the quadratic equation to determine the length and breadth of the plot.

Solve Question 2(i) of Exercise 1 by using the quadratic formula. (i) The area of a rectangular plot is 528 m^2 . The length of the plot (in meters) is one more than twice its breadth. We need to find the length and breadth of the plot.

The perimeter of a rectangular region is 340 m. The length of this region is 10 m more than thrice its breadth. Find the length and the breadth of the rectangular region.

The perimeter of a rectangular swimming pool is 154 m. Its length is 2 m more than twice its breadth. What are the length and the breadth of the pool?

The perimeter of a rectangular plot is 52m and its length is 17m. Find its area.

The length of a rectangular playground is 9 m more than twice its breadth. If the perimeter of the ground is 90m, then find the length and the breadth of the playground.

If the area of rectangular plot is 180 sq. m and its length is 15 m, then its breadth is

The perimeter of a rectangular plot is 52m and its length is 17m. Find its breadth

Ravish owns a plot of rectangular shape. He has fenced it with a wire of length 750 m . The length of the plot exceeds the breadth by 5 m . Find the length and breadth of the plot.