Home
Class 10
MATHS
Solve 9x^(2)-9(a+b)x+5ab+2b^(2)=0....

Solve `9x^(2)-9(a+b)x+5ab+2b^(2)=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equation \(9x^2 - 9(a+b)x + (5ab + 2b^2) = 0\), we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Identify coefficients From the equation \(9x^2 - 9(a+b)x + (5ab + 2b^2) = 0\), we identify: - \(a = 9\) - \(b = -9(a+b)\) - \(c = 5ab + 2b^2\) ### Step 2: Substitute coefficients into the formula Now we can substitute these values into the quadratic formula: \[ x = \frac{-(-9(a+b)) \pm \sqrt{(-9(a+b))^2 - 4 \cdot 9 \cdot (5ab + 2b^2)}}{2 \cdot 9} \] ### Step 3: Simplify the expression This simplifies to: \[ x = \frac{9(a+b) \pm \sqrt{(9(a+b))^2 - 36(5ab + 2b^2)}}{18} \] ### Step 4: Calculate \(b^2 - 4ac\) Now we calculate \(b^2 - 4ac\): \[ (9(a+b))^2 = 81(a+b)^2 = 81(a^2 + 2ab + b^2) \] And: \[ 36(5ab + 2b^2) = 180ab + 72b^2 \] Now substituting these into the discriminant: \[ b^2 - 4ac = 81(a^2 + 2ab + b^2) - (180ab + 72b^2) \] ### Step 5: Combine like terms Combining the terms gives: \[ 81a^2 + 162ab + 81b^2 - 180ab - 72b^2 = 81a^2 - 18ab + 9b^2 \] ### Step 6: Factor the discriminant We can factor this expression: \[ 81a^2 - 18ab + 9b^2 = (9a - 3b)^2 \] ### Step 7: Substitute back into the formula Now substituting back into the quadratic formula gives: \[ x = \frac{9(a+b) \pm (9a - 3b)}{18} \] ### Step 8: Split into two cases This results in two cases: 1. \(x_1 = \frac{9(a+b) + (9a - 3b)}{18} = \frac{18a + 6b}{18} = a + \frac{b}{3}\) 2. \(x_2 = \frac{9(a+b) - (9a - 3b)}{18} = \frac{6b}{18} = \frac{b}{3}\) ### Final Answer: Thus, the solutions are: \[ x_1 = a + \frac{b}{3}, \quad x_2 = \frac{b}{3} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|6 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve 9x^(2)-12x +25=0

solve x^(2)+6x+9=

Using quadratic formula solve the following quadratic equations: p^2x^2+(p^2-q^2)x-q^2=0,p!=0 9x^2-9(a+b)x+(2a^2+5a b+2b^2)=0

Solve x^2+3x+9=0

5. Solve 12abx^2-9a^2x +8b^2x-6ab =0

5. Solve 12abx^2-9a^2x +8b^2x-6ab =0

solve x^(2)+4^(2)=9

Solve equation : 9(x^(2)+(1)/(x^(2)))-9(x+(1)/(x))-52=0

Without solving , comment upon the nature of roots of each of the following equations : (i) 7x^(2)-9x+2=0 (ii) 6x^(2)-13x+4=0 (iii) 25x^(2)-10x+1=0 (iv) x^(2)+2sqrt(3)x-9=0 (v) x^(2)-ax-b^(2)=0 (vi) 2x^(2)+8x+9=0

Solve |x^(2)-3x-4|=9-|x^(2)-1|