Home
Class 10
MATHS
Solve x^(2)-(sqrt3+1)x+sqrt3=0....

Solve `x^(2)-(sqrt3+1)x+sqrt3=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equation \( x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0 \), we will follow these steps: ### Step 1: Identify the coefficients The given equation is in the standard form \( ax^2 + bx + c = 0 \). Here, we have: - \( a = 1 \) - \( b = -(\sqrt{3} + 1) \) - \( c = \sqrt{3} \) ### Step 2: Use the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \) into the formula: ### Step 3: Calculate \( b^2 - 4ac \) First, we need to calculate \( b^2 - 4ac \): \[ b^2 = (-(\sqrt{3} + 1))^2 = (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Next, calculate \( 4ac \): \[ 4ac = 4 \cdot 1 \cdot \sqrt{3} = 4\sqrt{3} \] Now, substitute these into the discriminant: \[ b^2 - 4ac = (4 + 2\sqrt{3}) - 4\sqrt{3} = 4 - 2\sqrt{3} \] ### Step 4: Substitute back into the quadratic formula Now, substituting \( b \) and the discriminant back into the quadratic formula: \[ x = \frac{-(-(\sqrt{3} + 1)) \pm \sqrt{4 - 2\sqrt{3}}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{\sqrt{3} + 1 \pm \sqrt{4 - 2\sqrt{3}}}{2} \] ### Step 5: Simplify \( \sqrt{4 - 2\sqrt{3}} \) To simplify \( \sqrt{4 - 2\sqrt{3}} \), we can express it in a different form. Let’s assume it can be expressed as \( \sqrt{a} - \sqrt{b} \). Squaring both sides gives: \[ 4 - 2\sqrt{3} = a + b - 2\sqrt{ab} \] From this, we can equate: 1. \( a + b = 4 \) 2. \( -2\sqrt{ab} = -2\sqrt{3} \) ⇒ \( \sqrt{ab} = \sqrt{3} \) ⇒ \( ab = 3 \) Solving these two equations: Let \( a = 4 - b \). Then substituting into \( ab = 3 \): \[ (4 - b)b = 3 \implies 4b - b^2 = 3 \implies b^2 - 4b + 3 = 0 \] Factoring gives: \[ (b - 3)(b - 1) = 0 \implies b = 3 \text{ or } b = 1 \] Thus, \( a = 1 \) or \( a = 3 \). Therefore, we can express: \[ \sqrt{4 - 2\sqrt{3}} = \sqrt{3} - 1 \] ### Step 6: Final substitution Now substituting back: \[ x = \frac{\sqrt{3} + 1 \pm (\sqrt{3} - 1)}{2} \] This gives us two cases: 1. \( x = \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \) 2. \( x = \frac{\sqrt{3} + 1 - (\sqrt{3} - 1)}{2} = \frac{2}{2} = 1 \) ### Conclusion Thus, the solutions to the equation \( x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0 \) are: \[ x = \sqrt{3} \quad \text{and} \quad x = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|6 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve by factorization: x^2-(sqrt(3)+1)x+sqrt(3)=0

Solve sqrt3 x^2 + x + sqrt3 = 0

Solve the equation x^2-(sqrt(3)+1)x+sqrt(3)=0 by the method of completing the square.

Solve the following quadratic equations : (i) 9x^(2) - 8x+2=0 (ii) sqrt7 x^(2) +x+ sqrt7=0 (iii) 2sqrt3x^(2) -sqrt2 x + 3sqrt3 =0

Solve the equation sqrt(3)x^(2)-sqrt(2)x+3sqrt(3)=0

Solve the following quadratic equation by factorization method: \ \ x^2-(2sqrt(3)+3i)x+6sqrt(3)i=0

Solve for x sqrt3x^2-2sqrt(2)x-2sqrt3=0

Solve sqrt(2x+1)+sqrt(3x+2)=sqrt(5x+3)

Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

Solve sqrt(3x)-sqrt(x)=2 .