Home
Class 10
MATHS
Solve 5^(x+1)+5^(2-x)=5^3+1...

Solve `5^(x+1)+5^(2-x)=5^3+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^{(x+1)} + 5^{(2-x)} = 5^3 + 1 \), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 5^{(x+1)} + 5^{(2-x)} = 5^3 + 1 \] ### Step 2: Simplify the right side Calculate \( 5^3 + 1 \): \[ 5^3 = 125 \quad \text{so,} \quad 5^3 + 1 = 125 + 1 = 126 \] Now, the equation becomes: \[ 5^{(x+1)} + 5^{(2-x)} = 126 \] ### Step 3: Substitute \( 5^x \) with \( y \) Let \( 5^x = y \). Then \( 5^{(x+1)} = 5 \cdot y \) and \( 5^{(2-x)} = \frac{25}{y} \) (since \( 5^{(2-x)} = 5^2 \cdot 5^{-x} = \frac{25}{y} \)). Substituting these into the equation gives: \[ 5y + \frac{25}{y} = 126 \] ### Step 4: Multiply through by \( y \) To eliminate the fraction, multiply the entire equation by \( y \): \[ 5y^2 + 25 = 126y \] ### Step 5: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ 5y^2 - 126y + 25 = 0 \] ### Step 6: Apply the quadratic formula The quadratic formula is given by: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation, \( a = 5 \), \( b = -126 \), and \( c = 25 \). Plugging in these values: \[ y = \frac{126 \pm \sqrt{(-126)^2 - 4 \cdot 5 \cdot 25}}{2 \cdot 5} \] Calculating the discriminant: \[ (-126)^2 = 15876 \quad \text{and} \quad 4 \cdot 5 \cdot 25 = 500 \] Thus: \[ 15876 - 500 = 15376 \] Now, taking the square root: \[ \sqrt{15376} = 124 \] So, substituting back into the formula gives: \[ y = \frac{126 \pm 124}{10} \] ### Step 7: Calculate the two possible values for \( y \) Calculating the two cases: 1. \( y = \frac{126 + 124}{10} = \frac{250}{10} = 25 \) 2. \( y = \frac{126 - 124}{10} = \frac{2}{10} = \frac{1}{5} \) ### Step 8: Solve for \( x \) Recall that \( y = 5^x \): 1. For \( y = 25 \): \[ 5^x = 25 \implies 5^x = 5^2 \implies x = 2 \] 2. For \( y = \frac{1}{5} \): \[ 5^x = \frac{1}{5} \implies 5^x = 5^{-1} \implies x = -1 \] ### Final Solution The solutions for \( x \) are: \[ \boxed{2 \text{ and } -1} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: 5^(x+1)+5^(2-x)=5^(3)+1

Solve : 3^(x-1)xx5^(2y-3)=225.

Solve : 5(2x-3)-3(3x-7)=5

Solve: (5x-1)/(x+2)<0.

Solve (x^2-x-1)(x^2-x-7)<-5.

Solve: 2/(5x)-5/(3x)=1/(15)

Solve: (2x+1)/(7x-2)=(3)/(5) .

Solve (5x+1)/((x+1)^2) - 1 < 0

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.