Home
Class 10
MATHS
Point P (h,k) divides a line segment bet...

Point P (h,k) divides a line segment between the exes in the ratio `1:2` Find the lengths (intercepts) on the axes made by this segment. Also find the area of triangle formed by the line segment and the axes.

Text Solution

AI Generated Solution

To solve the problem step by step, we will find the lengths of the intercepts on the axes made by the line segment that point P (h, k) divides in the ratio 1:2, and then we will calculate the area of the triangle formed by the line segment and the axes. ### Step 1: Understand the problem We have a point P(h, k) that divides the line segment between the x-axis and y-axis in the ratio 1:2. We need to find the intercepts on the axes and the area of the triangle formed by these intercepts. ### Step 2: Define the points of intercepts Let: - Point A be the intercept on the x-axis, which has coordinates (x, 0). ...
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Examples|8 Videos
  • CO-ORDINATE GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems Of NCERT/exemplar|14 Videos
  • CIRCLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Long Answer Questions|2 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos

Similar Questions

Explore conceptually related problems

Point R (h, k) divides a line segment between the axes in the ratio 1:"2 . Find equation of the line.

Point R (h, k) divides a line segment between the axes in the ratio 1: 2 . Find equation of the line.

Point R (h, k) divides a line segment between the axis in the ratio 1: 2 . Find equation of the line.

Divide a line segment of length 5 cm externally in the ratio 5:2 .

To divide a line segment in a given ratio.

Divide a line segment of length 10cm internally in the ratio 3:2

Divide a line segment of length 8 cm internally in the ratio 4:2 .

Divide a line segment of length 8cm internally in the ratio 3:4 .

Divide a line segment of length 10 cm internally in the ratio 5:4.

Find the equation of a line whose segment between the axes is divided in the ratio 2 : 3 by the point (h,k) .