Home
Class 10
MATHS
If a(n)=3-4n, then show that a(1),a(2),a...

If `a_(n)=3-4n`, then show that `a_(1),a_(2),a_(3), …` form an AP. Also, find `S_(20)`.

Text Solution

Verified by Experts

`a_(n)=3-4n`
`rArr a_(n-1)=3-4(n-1)`
`=3-4n+4=7-4n`
`:. a_(n)-a_(n-1)=(3-4n)-(7-4n)=-4`
Which does not depend on 'n' i.e., the difference of two consecutive terms is constant.
`:.` Given sequence is in A.P.
Now, `a_(1)=a=3-4(1)=-1`,
d=-4
`:. S_(20)=(20)/(2)[2a+(20-1)d]`
`=10[2(-1)+19(-4)]=-780`
Promotional Banner

Topper's Solved these Questions

  • ARITHMETIC PROGRESSION

    NAGEEN PRAKASHAN ENGLISH|Exercise Problem From NCERT/exemplar|20 Videos
  • ARITHMETIC PROGRESSION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 5a|5 Videos
  • AREA RELATED TO CIRCLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Question|5 Videos
  • CIRCLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Long Answer Questions|2 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,……..a_n, a_(n+1),…….. be A.P. whose common difference is d and S_1=a_1+a_2+……..+a_n, S_2=a_(n+1)+………..+a_(2n), S_3=a_(2n+1)+…………+a_(3n) etc show that S_1,S_2,S_3, S_4………… are in A.P. whose common difference is n^2d .

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

If a_(1),a_(2),a_(3),…. are in A.P., then a_(p),a_(q),a_(r) are in A.P. if p,q,r are in

Statement I If A gt 0 , B gt 0 and A+B= pi/3 , then the maximum value of tan A tan B is 1/3 . Statement II If a_(1)+a_(2)+a_(3)+...+a_(n)=k (constant), then the value a_(1)a_(2)a_(3)...a_(n) is greatest when a_(1)=a_(2)=a_(3)=...+a_(n)

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(1), a_(2), a_(3),........, a_(n) ,... are in A.P. such that a_(4) - a_(7) + a_(10) = m , then the sum of first 13 terms of this A.P., is:

If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1 , show that a_(n+2)gea_(n+1) and if a lim l as n to oo the evaluate lim_(ntooo)a_(n)