Home
Class 10
MATHS
Find the sum of the following A.P.'s : ...

Find the sum of the following A.P.'s :
(i) `3,8,13, .... ` to 20 terms. (ii) `1,4,7,.........` to 50 terms.
(iii) `8,5,2, ....` to 25 terms. (iv) `(a+b), (2a+3b), (3b+5b), ........ ` to n terms.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) Find the sum of the A.P. `3, 8, 13, ...` to 20 terms. 1. **Identify the first term (A)**: - The first term \( A = 3 \). 2. **Determine the common difference (D)**: - The common difference \( D = 8 - 3 = 5 \). 3. **Identify the number of terms (N)**: - The number of terms \( N = 20 \). 4. **Use the formula for the sum of the first N terms of an A.P.**: \[ S_N = \frac{N}{2} \times (2A + (N-1)D) \] 5. **Substitute the values into the formula**: \[ S_{20} = \frac{20}{2} \times (2 \times 3 + (20-1) \times 5) \] \[ = 10 \times (6 + 19 \times 5) \] \[ = 10 \times (6 + 95) \] \[ = 10 \times 101 = 1010 \] ### (ii) Find the sum of the A.P. `1, 4, 7, ...` to 50 terms. 1. **Identify the first term (A)**: - The first term \( A = 1 \). 2. **Determine the common difference (D)**: - The common difference \( D = 4 - 1 = 3 \). 3. **Identify the number of terms (N)**: - The number of terms \( N = 50 \). 4. **Use the sum formula**: \[ S_N = \frac{N}{2} \times (2A + (N-1)D) \] 5. **Substitute the values**: \[ S_{50} = \frac{50}{2} \times (2 \times 1 + (50-1) \times 3) \] \[ = 25 \times (2 + 49 \times 3) \] \[ = 25 \times (2 + 147) \] \[ = 25 \times 149 = 3725 \] ### (iii) Find the sum of the A.P. `8, 5, 2, ...` to 25 terms. 1. **Identify the first term (A)**: - The first term \( A = 8 \). 2. **Determine the common difference (D)**: - The common difference \( D = 5 - 8 = -3 \). 3. **Identify the number of terms (N)**: - The number of terms \( N = 25 \). 4. **Use the sum formula**: \[ S_N = \frac{N}{2} \times (2A + (N-1)D) \] 5. **Substitute the values**: \[ S_{25} = \frac{25}{2} \times (2 \times 8 + (25-1) \times (-3)) \] \[ = \frac{25}{2} \times (16 - 72) \] \[ = \frac{25}{2} \times (-56) \] \[ = 25 \times (-28) = -700 \] ### (iv) Find the sum of the A.P. `(a+b), (2a+3b), (3a+5b), ...` to n terms. 1. **Identify the first term (A)**: - The first term \( A = a + b \). 2. **Determine the common difference (D)**: - The second term is \( 2a + 3b \) and the first term is \( a + b \). - Thus, \( D = (2a + 3b) - (a + b) = a + 2b \). 3. **Identify the number of terms (N)**: - The number of terms \( N = n \). 4. **Use the sum formula**: \[ S_N = \frac{N}{2} \times (2A + (N-1)D) \] 5. **Substitute the values**: \[ S_n = \frac{n}{2} \times (2(a + b) + (n-1)(a + 2b)) \] \[ = \frac{n}{2} \times (2a + 2b + (n-1)(a + 2b)) \] \[ = \frac{n}{2} \times (2a + 2b + (n-1)a + 2(n-1)b) \] \[ = \frac{n}{2} \times ((2 + n - 1)a + (2 + 2(n - 1))b) \] \[ = \frac{n}{2} \times (na + 2nb) \] ### Final Answers: 1. \( S_{20} = 1010 \) 2. \( S_{50} = 3725 \) 3. \( S_{25} = -700 \) 4. \( S_n = \frac{n}{2} \times (na + 2nb) \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ARITHMETIC PROGRESSION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 5d|10 Videos
  • ARITHMETIC PROGRESSION

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|10 Videos
  • ARITHMETIC PROGRESSION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 5b|23 Videos
  • AREA RELATED TO CIRCLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Question|5 Videos
  • CIRCLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Long Answer Questions|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the following arithmetic progressions: (i) 50 ,\ 46 ,\ 42 ,\ ... to 10 terms (ii) 1,\ 3,\ 5,\ 7,\ ... to 12 terms (iii) 3,\ 9//2,\ 6,\ 15//2,\ ... to 25 terms

Find: nth term of the A.P. 13,8,3,-2,…

Find the sum of 28 terms of an A.P. whose nth term is 8n -5.

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Find the sum of the first 22 terms of the A.P. : 8, 3, -2,………….

Find the sum to 25 terms of the A.P. 5, 7, 9, 11, …

Find the sum of 50 terms of the A.P. 1 + 4 + 7 + ....

Find n t h term of the A.P. 13 ,\ 8,\ 3,\ -2,\ dot

Find the sum of 20 terms of the A.P. 1,4,7,10…..

In the following two A.P. how many terms are identical ? 2,5,8,11… to 60 terms and 3,5,7,…..50 terms