Home
Class 10
MATHS
Solve : a(x+y)+b(x-y)=a^2-a b+b^2, a(x+...

Solve : `a(x+y)+b(x-y)=a^2-a b+b^2`, `a(x+y)-b(x-y)=a^2+a b-b^2`

Text Solution

Verified by Experts

Given equations can be written as
`ax + ay + bx - by = a^(2) - ab + b^(2)`
`implies (a+b) x + (a - b) y = a^(2) - ab + b^(2)" ....(1)"`
and `ax + ay - bx + by = a^(2) + ab + b^(2)`
`implies (a-b) x + (a+b) y = a^(2) + ab + b^(2) " ....(2)"`
For equations (1) and (2) by cross multiplication method, we have

`(x)/((a-b) xx [-a^(2) + ab + b^(2)]-(a+b) xx [-(a^(2) - ab + b^(2))])`
`=(y)/([-(a^(2)-ab+b^(2))]xx(a-b)-[-(a^(2)+ab + b^(2))xx (a + b)])=(1)/((a+b)(a+b)-(a-b)(a-b))`
implies `(x)/(-(a^(3) - b^(3))+ (a^(3)+b^(3)))`
`=(y)/(-(a^(3) - a^(2)b + ab^(2) - a^(2)b + ab^(2) - b^(3))+(a^(3)+a^(2)b+ab^(2)+a^(2)b+ab^(2)+b^(3)))=(1)/((a+b)^(2)-(a-b)^(2))`
implies `(x)/(2b^(3)) = (y)/(2a^(2)b-2ab^(2) + b^(3) + 2a^(2)b + 2ab^(2) + b^(3))=(1)/(4ab)`
implies `(x)/(2b^(3)) = (y)/(4a^(2)b + 2b^(3)) = (1)/(4ab)`
implies `(x)/(2b^(3))=(y)/(2b(2a^(2)+b^(2)))=(1)/(4ab)`
when `(x)/(2b^(3)) = (1)/(4ab) implies x = (2b^(3))/(4ab) implies x = (b^(2))/(2a)`
and `(y)/(2b(2a^(2) + b^(2))) = (1)/(4ab) implies y = (2b(2a^(2)+b^(2)))/(4ab) implies y = (2a^(2)+b^(2))/(2a)`
Hence, `{:(x = (b^(2))/(2a)),(y = (2a^(2)+b^(2))/(2a)):}}` is the required solution.
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|18 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3A|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve: x+y=a+b ; a x-b y=a^2-b^2

x+y=a+b , a x-b y=a^2-b^2

Solve (x)/(a) + (y)/(b) = 1 and a(x - a)- b(y + b) = 2a^(2) + b^(2) .

Solve the following system of equations in x and y (a-b)x+(a+b)y=a^2-2a b-b^2,\ \ \ \ (a+b)(x+y)=a^2+b^2

Solve : {:((a)/(x)-(b)/(y)=0),((ab^(2))/(x)+(a^(2)b)/(y)=a^(2)+b^(2)):}

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab and (a + b) (x + y) = a ^2+ b^2

(a-b)x+ (a+b)y=a^2-2ab-b^2 , (a+b)(x+y)=a^2+b^2 find x and y

Solve: a x+b y=a-b ,\ \ \ \ b x-a y=a+b

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A) (a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B) (a+b)(x^2+y^2)=2a b (C) (x^2+y^2)=(a^2+b^2) (D) (a-b)^2(x^2+y^2)=a^2b^2

The foci of hyperbola xy = ((a^2 + b^2)/(4)) are given by (A) x = y = +- ((a^2 + b^2)/(4a)) (B) x = y = +- ((a^2 + b^2)/(4b)) (C) x = y = +- ((a^2 + b^2)/(2a)) (D) x = y = +- ((a^2 + b^2)/(2b))