Home
Class 10
MATHS
{:(2x - 3y = 17),(4x + y = 13):}...

`{:(2x - 3y = 17),(4x + y = 13):}`

Text Solution

Verified by Experts

The correct Answer is:
x = 4, y = -3
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|56 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|9 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve: {:(2x - 3y = - 13),(3x - 2y = - 12):}

{:(0.4x + 0.3y = 1.7),(0.7x - 0.2y = 0.8):}

If 4x + y = 14 and 3x + 2y = 13 , then x - y =

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

Solve for (x - 1)^(2) and (y + 3)^(2) , 2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5) and 4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2) .

The length of the latus rectum of the ellipse 2x^(2) + 3y^(2) - 4x - 6y - 13 = 0 is

Solve, using cross - multiplication : 4x + 3y = 17 3x - 4y + 6 =0

Find the centre, the length of the axes and the accentricity of the ellipse : x^2 + 3y^2 - 4x - 12y + 13=0

If 2x + y = 23 and 4x - y = 19, find the values of x - 3y and 5y - 2x.

Simplify the following (2x - 3y ) (4x - 5y)