Home
Class 10
MATHS
From a point P on the ground the angle o...

From a point P on the ground the angle of elevation of the top of a tower is `30^(@)` and that of the top a flagstaff fixed on the top of the tower is `60(@)`. If the length of the flafstaff is 5 m, find the height of the tower.

Text Solution

AI Generated Solution

To solve the problem step by step, we will use trigonometric ratios and the information provided in the question. ### Step 1: Understand the Problem We have a point P on the ground from which the angles of elevation to the top of a tower and the top of a flagstaff on the tower are given. The angle of elevation to the top of the tower is \(30^\circ\) and to the top of the flagstaff is \(60^\circ\). The height of the flagstaff is \(5\) meters. ### Step 2: Define Variables Let: - \(h\) = height of the tower (in meters) ...
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|32 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|5 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

A vertical pole and a vertical tower are on the same level ground in such a way that from the top of the pole the angle of elevation of the top of the tower is 60^(@) and the angle of depression of the bottom of the tower is 30^(@) . Find : the height of the pole, if the height of the tower is 75 m

A vertical pole and a vertical tower are on the same level ground in such a way that from the top of the pole the angle of elevation of the top of the tower is 60^(@) and the angle of depression of the bottom of the tower is 30^(@) . Find : the height of the tower, it the height of the pole is 20 m ,

From the top of a 7 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is 30°. Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower is 30^@ . Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground, which is 40 m away from the foot of the tower is 30^(@) . Find the height of the tower.

From a point on the ground 40m away from the foot of a tower, the angle of elevation of the top of the tower is 30^@ . The angle of elevation of the top of a water tank (on the top of the tower) is 45^@ . Find the (i) height of the tower (ii) the depth of the tank.

The angle of elevation theta of the top of a tower is 30^(@) . If the height of the tower is doubled, then new tan theta will be

The angle elevation of the top of a tower from a point C on the ground. Which is 30 m away from the foot of the tower is 30^(@) . Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower, is 30^@ . Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30^@ . Find the height of the tower.