Home
Class 10
MATHS
As observed from the top of a light hous...

As observed from the top of a light house, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, changes from `30^(@)" and "90^(@)`. then distance travelled by ship is

Text Solution

AI Generated Solution

To solve the problem step by step, we will use trigonometric concepts related to angles of depression and right triangles. ### Step-by-Step Solution: 1. **Understand the Setup**: - We have a lighthouse that is 100 meters tall. - The angle of depression from the top of the lighthouse to the ship changes from \(30^\circ\) to \(90^\circ\). ...
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|32 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|5 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

As observed from the top of a light house, 100m above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30o to 45o . Determine the distance travelled by the ship during the period of observation.

An observer on the top of a cliff, 200 m above the sea-level, observes the angles of depression of the two ships to be 45^(@) and 30^(@) respectively. Find the distance between the ships, if the ships are on the opposite sides of the cliff

An observer on the top of a cliff, 200 m above the sea-level, observes the angles of depression of the two ships to be 45^(@) and 30^(@) respectively. Find the distance between the ships, if the ships are on the same side of the cliff,

As observed from the top of a 100 m high lighthouse from the sea level, the angles of depression of two ships are 30^@ and 45^@ If one ship is exactly behind the other one on the same side of the lighthouse, find the distance between the two ships.

As observed from the top of a 150 m tall light house, the angles of depression of two ships approaching it are 30^@ and 45^@ . If one ship is directly behind the other, find the distance between the two ships.

From the top of a light house 100 m high, t he angles of depression of two ships are observed as 48^(@) and 36^(@) respectively. Find the distance between the two ships (in the nearest metre ) if : the ships are on the same side of the light house.

As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30^@ and 45^@ . If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30o and 45o . If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ship.

Form the top of a light house 60 m high with its base at the sea-level the angle of depression of a boat is 15^(@) . Find the distance of the boat from the foot of light house.

As observed from the top of a 80 m tall lighthouse, the angle of depression of two ships, on the same side of the light house in horizontal line with its base, are 30^(@) and 40^(@) respectively . Find the distance between the two ships. Given your answer correct to the nearest metre