Home
Class 10
MATHS
The angle of elevation of the top of a t...

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is `60^(@)` and the angle of elevation of the top of the second tower from the foot of the first tower is `30^(@)`. Find the distance between the two towers and also the height of the other tower.

Text Solution

AI Generated Solution

To solve the problem, we will use trigonometric ratios and properties of right triangles. Let's break it down step by step. ### Step 1: Understand the Problem We have two towers, one tower (AB) is 30 m high, and we need to find the height of the second tower (CD) and the distance between the two towers (BC). ### Step 2: Draw the Diagram Let: - A be the foot of the first tower (AB). ...
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|32 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|5 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60^(@) and the angle of elevation of the top of the second tower from the foot of the first tower is 30^(@) . Find the distance between the two and also the height of the tower.

The angle of elevation of the top of a building from the foot of the tower is 30^(@) and the angle of elevation of the top of the tower from the foot of the building is 45^(@) . If the tower is 30 m high, find the height of the building.

A 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole, is 60^(@) and the angle of elevation of the top of the pole as seen from the foot of the tower is 30^(@) . Find : the horizontal distance between the pole and the tower.

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 60 m high, find the height of the building.

The angle of elevation of the top of a building from the foot of the tower is 30^o and the angle of elevation of the top of the tower from the foot of the building is 60^o . If the tower is 50 m high, find the height of the building.

The angle of elevation of the top of a hill at the foot of a tower is 60^@ and the angle of elevation of the top of the tower from the foot of the hill is 30^@ . If the tower is 50 m high, what is the height of the hill?

The angle of elevation of the top of the building from the foot of the tower is 30^o and the angle of the top of the tower from the foot of the building is 60^o . If the tower is 50m high, find the height of the building.

The angle of elevation of the top of a tower from a certain point is 30^o . If the observer moves 20 m towards the tower, the angle of elevation of the top of the tower increases by 15^o . Then height of the tower is

The angle of elevation of the top of a tower from a point on the ground, which is 40 m away from the foot of the tower is 30^(@) . Find the height of the tower.

The angle of elevation of the top of a tower from a point 40 m away from its foot is 60^(@) . Find the height of the tower.