Home
Class 10
MATHS
A 1.2 m tall girl spots a ballon moving ...

A 1.2 m tall girl spots a ballon moving with wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is `60^(@)`. After some time, the angle of elevation reduces to `30^(@)`. Find the distance travelled by the balloon during the interval.

Text Solution

AI Generated Solution

To solve the problem step by step, we will use trigonometric principles to find the distance traveled by the balloon. ### Step-by-Step Solution 1. **Identify the heights**: - The height of the girl is \( 1.2 \, \text{m} \). - The height of the balloon from the ground is \( 88.2 \, \text{m} \). - Therefore, the height of the balloon from the eyes of the girl is: ...
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|32 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|5 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60° . After some time, the angle of elevation reduces to 30°.Find the distance travelled by the ballon during the interval

The angle of elevation of the top of a tower from a point on the ground is 30^(@) . After walking 45 m towards the tower, the angle of elevation becomes 45^(@) . Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground is 30^(@) . After walking 40sqrt3 m towards the tower, the angle of elevation becomes 60^(@) . Find the height of the tower.

The angle of elevation of the top of a tower at a point A on the ground is 30^(@) . On walking 20 meters toward the tower, the angle of elevation is 60^(@) . Find the height of the tower and its distance from A.

A man from the top of a 100 metres high tower sees a car moving towards the tower at an angle of depression of 30^@ . After some time, the angle of depression becomes 60^@ .The distance (in metres) travelled by the car during this time is

The angle of elevation of the top of a tower. from a point on the ground and at a distance of 160 m from its foot, is fond to be 60^(@) . Find the height of the tower .

The angle of elevation of the top of a tower from a point 40 m away from its foot is 60^(@) . Find the height of the tower.

The angle of elevation of the top of a vertical tower a point on the ground is 60^(@) From another point 10 m vertical above the first, its angle of elevation is 45^(@) . Find the height of the tower.

A statue 1.6m tall stands on the top of pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60^@ and from the same point the angle of elevation of the top of the pedestal is 45^@ . Find the height of the pedestal.

On the level ground, the angle of elevation of a tower is 30^(@) . On moving 20 m nearer, the angle of elevation is 60^(@) . The height of the tower is