Home
Class 9
MATHS
p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)...

`p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)`

Text Solution

Verified by Experts

Given expression : `p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)`
Here, `x^(2)` is common in first two terms and (-a) is common in last two terms.
`therefore p^(2)x^(2)+c^(2)x^(2)-ac^(2)-ap^(2)=x^(2)(p^(2)+c^(2))-a(c^(2)+p^(2))`
`=x^(2)(p^(2)+c^(2))-a(p^(2)+c^(2))=(p^(2)+c^(2))(x^(2)-a)`
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|18 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If the quadratic equation a^(2)(b^(2) -c^(2)) x^(2) +b^(2) (c^(2) -a^(2)) x+c^(2) (a^(2) -b^(2)) =0 has real and equal roots, than a^(2) , b^(2) ,c^(2) are (1) A.P. (2) (G.P. (3) H.P. (4) A.G.P.

If the square of the length of the tangents from a point P to the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. then a^(2),b^(2),c^(2) are in

If a,b,c, and c, are the roots of x^(2)-4x+3=0,x^(2)-8x+15=0 and x^(2)-6x+5=0, [{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]

If alpha and beta are the roots of the equation ax^(2)+bc+c=0 then the sum of the roots of the equation a^(2)x^(2)+(b^(2)-2ac)x+b^(2)-4ac=0 is

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

If a,b,c are in A.P. prove that the following are also in A.P. a^(2)(b+c) , b^(2) (c+a) , c^(2)(a+b)

Solve the equation 3 ^(x+1)C_(2)+ ^(2)P_(2)x=4^(x)P_(2),x in N .

Let a,b,c , d ar positive real number such that a/b ne c/d, then the roots of the equation: (a^(2) +b^(2)) x ^(2) +2x (ac+ bd) + (c^(2) +d^(2))=0 are :