Home
Class 9
MATHS
Factorise x^(2)-(y-z)^(2)....

Factorise `x^(2)-(y-z)^(2)`.

A

`(x+y-z)(x+y+z)`

B

`(x+y-z)(x-y-z)`

C

`(x-y-z)(x-y+z)`

D

`(x+y-z)(x-y+z)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 - (y - z)^2 \), we can follow these steps: ### Step 1: Identify the formula We will use the difference of squares formula, which states: \[ a^2 - b^2 = (a + b)(a - b) \] In our case, we can identify: - \( a = x \) - \( b = (y - z) \) ### Step 2: Apply the formula Using the difference of squares formula, we can rewrite the expression: \[ x^2 - (y - z)^2 = (x + (y - z))(x - (y - z)) \] ### Step 3: Simplify the factors Now, we simplify the factors: 1. For the first factor: \[ x + (y - z) = x + y - z \] 2. For the second factor: \[ x - (y - z) = x - y + z \] ### Step 4: Write the final factorised form Putting it all together, we have: \[ x^2 - (y - z)^2 = (x + y - z)(x - y + z) \] Thus, the factorised form of \( x^2 - (y - z)^2 \) is: \[ (x + y - z)(x - y + z) \]

To factorise the expression \( x^2 - (y - z)^2 \), we can follow these steps: ### Step 1: Identify the formula We will use the difference of squares formula, which states: \[ a^2 - b^2 = (a + b)(a - b) \] In our case, we can identify: ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|18 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise x^(2)-6x-y^(2)+9 .

Factorise : 16x^(2) - y^(2) + 4yz - 4z^(2)

Factorise (x^(2) +y^(2) -z^(2))^(2) - 4x^(2) y^(2)

Factorise : (x^(2) + 4y^(2) - 9z^(2))^(2) - 16x^(2)y^(2)

Factorise : (1-x^(2))(1-y^(2)) + 4xy

Factorise : (vi) x^(2) - y^(2) - 2yz - z^(2)

Factorise : x^(2) (a-b) - y^(2) (a-b) + z^(2) (a-b)

Factorise (2x- y)^(2) - 14 x + 7 y - 18

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : 4x^2 - 81 y^2