Home
Class 9
MATHS
If p(x)=x^(3)+2x^(2)+x find : (i) p(0)...

If `p(x)=x^(3)+2x^(2)+x` find :
(i) p(0) (ii)p(2)

Text Solution

Verified by Experts

The correct Answer is:
(i) 0, (ii) 18
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2c|24 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2d|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

Knowledge Check

  • If p(x)=3x^2+9x+7 and p(a)=2 , then a=

    A
    only 0.736
    B
    only-2.264
    C
    0.736 or 2.264
    D
    -0.736 or -2.264
  • Similar Questions

    Explore conceptually related problems

    Find the zero of the polynomial in each of the following eases:(i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=a x , a!=0 (vii) p(x)=c x+d , c!=0, c , d are real numbers.

    check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

    If (x-2) is a factor of 2x^(3)-x^(2)-px-2 (i) find the value of p. (ii) with the value of p, factorise the above expression completely.

    Find the value of k, if x-1 is a factor of p(x) in each of the following cases : (i) p(x)=x^(2)+x+k " " (ii) p(x)=2x^(2)+kx+sqrt(2) (iii) p(x)=kx^(2)-sqrt(2)x+1 " " (iv) p(x) =kx^(2)-3x+k

    If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

    If p(x) =x^(2)-4x+3, then evaluate p(2) -p(-1)+p((1)/(2)) .

    Find the remainder when P(x)-:G(x) (i) P(x)= 2x^4-6x^3+2x^2-x+2 ; G(x)=(x+2) (ii) P(x)=4x^3+4x^2-x-1; G(x)=(2x+1)