Home
Class 9
MATHS
If p(x)=4x^(2)-3x+6 find : (i) p(4) (i...

If `p(x)=4x^(2)-3x+6` find :
(i) p(4) (ii) p(-5)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will evaluate the polynomial \( p(x) = 4x^2 - 3x + 6 \) for the given values of \( x \). ### Step 1: Calculate \( p(4) \) 1. Substitute \( x = 4 \) into the polynomial: \[ p(4) = 4(4^2) - 3(4) + 6 \] 2. Calculate \( 4^2 \): \[ 4^2 = 16 \] 3. Substitute back into the equation: \[ p(4) = 4(16) - 3(4) + 6 \] 4. Calculate \( 4 \times 16 \): \[ 4 \times 16 = 64 \] 5. Calculate \( -3 \times 4 \): \[ -3 \times 4 = -12 \] 6. Now substitute these values into the equation: \[ p(4) = 64 - 12 + 6 \] 7. Combine the terms: \[ 64 - 12 = 52 \] \[ 52 + 6 = 58 \] Thus, \( p(4) = 58 \). ### Step 2: Calculate \( p(-5) \) 1. Substitute \( x = -5 \) into the polynomial: \[ p(-5) = 4(-5^2) - 3(-5) + 6 \] 2. Calculate \( -5^2 \): \[ -5^2 = 25 \] 3. Substitute back into the equation: \[ p(-5) = 4(25) - 3(-5) + 6 \] 4. Calculate \( 4 \times 25 \): \[ 4 \times 25 = 100 \] 5. Calculate \( -3 \times -5 \): \[ -3 \times -5 = 15 \] 6. Now substitute these values into the equation: \[ p(-5) = 100 + 15 + 6 \] 7. Combine the terms: \[ 100 + 15 = 115 \] \[ 115 + 6 = 121 \] Thus, \( p(-5) = 121 \). ### Final Answers: - \( p(4) = 58 \) - \( p(-5) = 121 \) ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2c|24 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2d|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If p(x)=x^(3)+2x^(2)+x find : (i) p(0) (ii)p(2)

Find the zero of the polynomial : (i) p(x)=x-3 " " (ii) q(x)=3x-4 " " (iii) p(x)=4x-7 " " (iv) q(x)=px+q, p ne 0 (v)p(x)=4x " " (vi) p(x)=(3)/(2)x-1

Find p(0),p(1) and p(-2) for the following polynomials (i) p(x)=10x-4x^(2)-3 (ii) p(y)=(y+2)(y-2)

If p(x) =x^(2)-4x+3, then evaluate p(2) -p(-1)+p((1)/(2)) .

If p(x)=4x-6 and p(a)=0 , then a=

If P(A)=0.3, P(B)=0.6 and P(A//B)=0.4 then find: (i) P(AnnB) (ii) P(B//A)

If A and B are events such that P(AuuB)=3//4.P(AnnB)=1//4,and P(A^c)=2//3 , then find (i) P(A) (ii) P(B) (iii) P(AnnB^c) (iv) P(A^cnnB)

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

Find the zero of the polynomial in each of the following eases:(i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=a x , a!=0 (vii) p(x)=c x+d , c!=0, c , d are real numbers.

If p=-2, find the value of : (i) 4p+7 (ii) -3p^2+4p+7 (iii) -2p^3-3p^2+4p+7