Home
Class 9
MATHS
Expand (x-3y+(z)/(2))^(2)....

Expand `(x-3y+(z)/(2))^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x - 3y + \frac{z}{2})^2\), we will use the formula for the square of a trinomial, which is given by: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \] ### Step-by-Step Solution: 1. **Identify \(a\), \(b\), and \(c\)**: - Let \(a = x\) - Let \(b = -3y\) - Let \(c = \frac{z}{2}\) 2. **Calculate \(a^2\)**: \[ a^2 = x^2 \] 3. **Calculate \(b^2\)**: \[ b^2 = (-3y)^2 = 9y^2 \] 4. **Calculate \(c^2\)**: \[ c^2 = \left(\frac{z}{2}\right)^2 = \frac{z^2}{4} \] 5. **Calculate \(2ab\)**: \[ 2ab = 2 \cdot x \cdot (-3y) = -6xy \] 6. **Calculate \(2bc\)**: \[ 2bc = 2 \cdot (-3y) \cdot \frac{z}{2} = -3yz \] 7. **Calculate \(2ca\)**: \[ 2ca = 2 \cdot \frac{z}{2} \cdot x = zx \] 8. **Combine all the terms**: Now, we can combine all the calculated terms: \[ (x - 3y + \frac{z}{2})^2 = x^2 + 9y^2 + \frac{z^2}{4} - 6xy - 3yz + zx \] ### Final Expanded Form: Thus, the expanded form of \((x - 3y + \frac{z}{2})^2\) is: \[ x^2 + 9y^2 + \frac{z^2}{4} - 6xy - 3yz + zx \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 E|22 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Expand: (5x-3y-2)^(2)

Expand: (x+y- z)^(2)

Expand (3x-2y)^(4)

Expand: (3x-2y + 5z)^(2)

Expand: (2x + 3y - 4z)^(2)

Expand: ((x^(2))/(2)-(y^(2))/(3))^(6)

Expand : (2x- y + 2)^(3)

Expand (3x-2y)^(4) .

Expand (y+x)^2

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)