Home
Class 9
MATHS
Factorise a^(3)-(b-c)^(3)....

Factorise `a^(3)-(b-c)^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^3 - (b - c)^3 \), we can use the formula for the difference of cubes, which states: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] In our case, we can identify: - \( x = a \) - \( y = b - c \) Now, let's apply the formula step by step. ### Step 1: Identify \( x \) and \( y \) We have: - \( x = a \) - \( y = b - c \) ### Step 2: Apply the difference of cubes formula Using the formula, we can write: \[ a^3 - (b - c)^3 = (a - (b - c))(a^2 + a(b - c) + (b - c)^2) \] ### Step 3: Simplify the first factor The first factor simplifies as follows: \[ a - (b - c) = a - b + c \] ### Step 4: Expand the second factor Now, we need to expand the second factor: \[ a^2 + a(b - c) + (b - c)^2 \] Calculating each term: - The first term is \( a^2 \). - The second term is \( ab - ac \). - The third term, using the expansion \( (b - c)^2 = b^2 - 2bc + c^2 \). So, we have: \[ a^2 + ab - ac + b^2 - 2bc + c^2 \] ### Step 5: Combine all parts Now, we can combine everything together: \[ a^3 - (b - c)^3 = (a - b + c)(a^2 + ab - ac + b^2 - 2bc + c^2) \] ### Final Answer Thus, the factorized form of \( a^3 - (b - c)^3 \) is: \[ (a - b + c)(a^2 + ab - ac + b^2 - 2bc + c^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 E|22 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2)-81(b-c)^(2)

Factorise : 8a^(3) - 27b^(3)

Factorise : 8a^(3) - b^(3) - 4ax + 2bx

Factorise : a^(3) -(27/a^(3))

Factorise a^(2) b - b^(3) . Using this result, find the value of 101^(2) xx 100 - 100^(3)

Factorise : a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)

Factorise : 1-8a^(3)

Factorise : 64 - a^(3)b^(3)

Factorise : a^(3) + 27b^(3)

Factorise : a^(3) - 27