Home
Class 9
MATHS
If a+b+c=p and ab+bc+ac=q, find a^(2)+b^...

If a+b+c=p and ab+bc+ac=q, find `a^(2)+b^(2)+c^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( a^2 + b^2 + c^2 \) given that \( a + b + c = p \) and \( ab + bc + ac = q \). ### Step-by-Step Solution: 1. **Use the identity for the square of a sum**: We start with the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] This identity relates the square of the sum of the variables to the sum of their squares and the products of the variables. 2. **Substitute known values**: From the problem, we know: \[ a + b + c = p \quad \text{and} \quad ab + ac + bc = q \] Therefore, we can substitute these into the identity: \[ p^2 = a^2 + b^2 + c^2 + 2q \] 3. **Rearrange the equation to solve for \( a^2 + b^2 + c^2 \)**: We want to isolate \( a^2 + b^2 + c^2 \). Rearranging the equation gives us: \[ a^2 + b^2 + c^2 = p^2 - 2q \] 4. **Final expression**: Thus, the final expression for \( a^2 + b^2 + c^2 \) is: \[ a^2 + b^2 + c^2 = p^2 - 2q \] ### Summary: The result we derived is: \[ a^2 + b^2 + c^2 = p^2 - 2q \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

if a +b+c=9 and ab+bc+ca=26,find a^(2)+b^(2)+c^(2).

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab) is defined. What is the value of P.

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca