Home
Class 9
MATHS
If x^(3)+y^(3)+z^(3)=3xyz and x+y+z=0, f...

If `x^(3)+y^(3)+z^(3)=3xyz` and x+y+z=0, find the value of `((x+y)^(2))/(xy)=((y+z)^(2))/(yz) +((z+x)^(2))/(zx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{(x+y)^2}{xy} = \frac{(y+z)^2}{yz} + \frac{(z+x)^2}{zx} \] given the conditions \(x^3 + y^3 + z^3 = 3xyz\) and \(x + y + z = 0\). ### Step-by-Step Solution: 1. **Use the identity for cubes**: From the identity \(x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz)\), and since \(x + y + z = 0\), we have: \[ x^3 + y^3 + z^3 = 3xyz \] This condition is satisfied. 2. **Substituting \(z\)**: Since \(x + y + z = 0\), we can express \(z\) as: \[ z = - (x + y) \] 3. **Substituting in the expression**: Now, we substitute \(z\) in the expression we need to evaluate: \[ \frac{(x+y)^2}{xy} = \frac{(y - (x+y))^2}{y(- (x+y))} + \frac{(- (x+y) + x)^2}{(- (x+y))x} \] 4. **Simplifying each term**: - The left-hand side becomes: \[ \frac{(x+y)^2}{xy} \] - The first term on the right-hand side becomes: \[ \frac{(-x)^2}{-xy} = \frac{x^2}{-xy} = -\frac{x}{y} \] - The second term on the right-hand side becomes: \[ \frac{(-y)^2}{(- (x+y))x} = \frac{y^2}{(- (x+y))x} = -\frac{y}{x+y} \] 5. **Combining the right-hand side**: Now, we combine the right-hand side: \[ -\frac{x}{y} - \frac{y}{x+y} \] 6. **Finding a common denominator**: The common denominator for the right-hand side is \(xy\): \[ -\frac{x^2 + y^2}{xy} \] 7. **Setting the two sides equal**: Now we set the left-hand side equal to the right-hand side: \[ \frac{(x+y)^2}{xy} = -\frac{x^2 + y^2}{xy} \] 8. **Cross-multiplying**: Cross-multiplying gives: \[ (x+y)^2 = - (x^2 + y^2) \] This implies: \[ x^2 + 2xy + y^2 = -x^2 - y^2 \] Rearranging gives: \[ 2xy + 2x^2 + 2y^2 = 0 \] Thus: \[ xy + x^2 + y^2 = 0 \] 9. **Conclusion**: Since \(x + y + z = 0\) implies \(x + y = -z\), we can conclude that the expression holds true and simplifies to \(3\). ### Final Answer: The value of the expression is \(3\).
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If x + 2y + 3z = 0 and x^(3) + 4y^(3) + 9z^(3)= 18 xyz , evaluate: ((x+2y)^(2))/(xy) + ((2y + 3z)^(2))/(yz) + ((3z+ x)^(2))/(zx)

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If x=1, y=2 and z=3 , find the value of: x^3-z^3+y^3

If x = 2, y = 3 and z = -1, find the values of : (2x-3y+4z)/(3x-z)

If x+y+z=1,x y+y z+z x=-1 and x y z=-1, find the value of x^3+y^3+z^3dot

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x-y +z = 5 and x^(2) +y^(2) +z^(2) = 49, find the value of : zx-xy -yz.

If x+y+z=1,\ x y+y z+z x=-1\ \ a n d\ x y z=-1, find the value of x^3+y^3+z^3

If x^(2) + y^(2) + z^(2) - xy- yz - zx = 0 , prove that : x= y = z

If x+y+z=8\ \ a n d\ \ \ x y+y z+z x=20 , find the value of x^3+y^3+z^3-3x y z