Home
Class 9
MATHS
If 3x-(4)/(x)=4, find 27x^(3)-(64)/(x^(3...

If `3x-(4)/(x)=4`, find `27x^(3)-(64)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3x - \frac{4}{x} = 4 \) and find the value of \( 27x^3 - \frac{64}{x^3} \), we can follow these steps: ### Step 1: Rearranging the original equation We start with the equation: \[ 3x - \frac{4}{x} = 4 \] We can rearrange this to isolate \( 3x \): \[ 3x = 4 + \frac{4}{x} \] ### Step 2: Cubing both sides Next, we will cube both sides of the equation to use the formula \( (a - b)^3 = a^3 - b^3 - 3ab(a - b) \). Here, let \( a = 3x \) and \( b = \frac{4}{x} \): \[ (3x - \frac{4}{x})^3 = 4^3 \] Thus, \[ (3x - \frac{4}{x})^3 = 64 \] ### Step 3: Applying the formula Using the formula: \[ (3x)^3 - \left(\frac{4}{x}\right)^3 - 3(3x)\left(\frac{4}{x}\right)(3x - \frac{4}{x}) = 64 \] Calculating \( (3x)^3 \) and \( \left(\frac{4}{x}\right)^3 \): \[ 27x^3 - \frac{64}{x^3} - 3(3x)\left(\frac{4}{x}\right)(3x - \frac{4}{x}) = 64 \] ### Step 4: Simplifying the equation Now, we need to simplify \( 3(3x)\left(\frac{4}{x}\right)(3x - \frac{4}{x}) \): \[ 3(3x)\left(\frac{4}{x}\right)(3x - \frac{4}{x}) = 36(3x - \frac{4}{x}) \] Substituting \( 3x - \frac{4}{x} = 4 \): \[ 36(4) = 144 \] ### Step 5: Substituting back into the equation Now we can substitute back into the equation: \[ 27x^3 - \frac{64}{x^3} - 144 = 64 \] ### Step 6: Isolating \( 27x^3 - \frac{64}{x^3} \) Rearranging gives: \[ 27x^3 - \frac{64}{x^3} = 64 + 144 \] \[ 27x^3 - \frac{64}{x^3} = 208 \] ### Final Answer Thus, the value of \( 27x^3 - \frac{64}{x^3} \) is: \[ \boxed{208} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If 3x- (4)/(x)= 4 and x ne 0 , find 27 x^(3)- (64)/(x^(3))

If x gt 0 and x^(2) +(1)/(9x^(2))= (25)/(36) , find x^(3) + (1)/(27x^(3))

If 27^x=9/(3^x), find xdot

If 27^x=9/(3^x), find xdot

If 3x -4y =5 and xy=3 , find : 27x^3 - 64y^3 .

If 3x + (1)/(3x) = 3 , find : (ii) 27x^3 + (1)/( 27x^3)

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then

If 3x - (1)/(3x ) =5 , find : (ii) 81x^4 + (1)/( 81x^4)

If x ne 0 and 3x +(1)/(3x)= 8, find the value of :27 x^(3) + ( 1)/(27x^(3))

If 4^(x+3)=112+8xx4^(x) , find (18x)^(3x)