Home
Class 9
MATHS
Simplify ((a^(2)-b^(2))^(3)+(b^(2)-c^(2)...

Simplify `((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a - b)^3 + (b - c)^3 + (c - a)^3} \] we can follow these steps: ### Step 1: Identify the Form of the Numerator and Denominator Both the numerator and denominator are in the form of a sum of cubes. We can use the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] if \(x + y + z = 0\). ### Step 2: Set Up the Variables Let: - \(x = a^2 - b^2\) - \(y = b^2 - c^2\) - \(z = c^2 - a^2\) Now, we check if \(x + y + z = 0\): \[ (a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0 \] Since \(x + y + z = 0\), we can apply the identity. ### Step 3: Apply the Identity to the Numerator Using the identity, we have: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, the numerator becomes: \[ 3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2) \] ### Step 4: Set Up the Denominator Now, let’s apply the same logic to the denominator. Let: - \(u = a - b\) - \(v = b - c\) - \(w = c - a\) Again, we check if \(u + v + w = 0\): \[ (a - b) + (b - c) + (c - a) = a - b + b - c + c - a = 0 \] So we can apply the identity here as well: \[ u^3 + v^3 + w^3 = 3uvw \] Thus, the denominator becomes: \[ 3(a - b)(b - c)(c - a) \] ### Step 5: Substitute Back into the Expression Now we substitute the simplified forms of the numerator and denominator back into the original expression: \[ \frac{3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}{3(a - b)(b - c)(c - a)} \] ### Step 6: Simplify the Expression The \(3\) cancels out: \[ \frac{(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}{(a - b)(b - c)(c - a)} \] ### Step 7: Factor the Numerator We can factor \(a^2 - b^2\) using the difference of squares: \[ a^2 - b^2 = (a - b)(a + b) \] \[ b^2 - c^2 = (b - c)(b + c) \] \[ c^2 - a^2 = (c - a)(c + a) \] Substituting these back into the expression gives: \[ \frac{(a - b)(a + b)(b - c)(b + c)(c - a)(c + a)}{(a - b)(b - c)(c - a)} \] ### Step 8: Cancel Common Terms Now we can cancel \((a - b)\), \((b - c)\), and \((c - a)\): \[ (a + b)(b + c)(c + a) \] ### Final Answer Thus, the simplified expression is: \[ (a + b)(b + c)(c + a) \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorize : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3

Factorize : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

Simplify (a+b)(2a-3b+c)-(2a-3b)c.

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If (a+(1)/(a))^(2)=3, "then" a^(3)+(1)/(a^(3)) equats :

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x+(1)/(x)=2, thenx^(2)+(1)/(x^(2)) is equal to

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is