Home
Class 9
MATHS
Show that if two chords of a circle bise...

Show that if two chords of a circle bisect one another they must be diameters.

Text Solution

Verified by Experts

The correct Answer is:
NA

NA
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 10b|19 Videos
  • CIRCLE

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 10c|20 Videos
  • CIRCLE

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|5 Videos
  • AREA OF PARALLELOGRAMS AND TRIANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Question)|5 Videos
  • CO-ORDINATE GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If a diameter of a circle bisects each of the two chords of a circle, prove that the chords are parallel.

If a diameter of a circle bisects each of the two chords of a circle, prove that the chords are parallel.

A Ca n dB D are chords of a circle that bisect each other. Prove that: A Ca n dB D are diameters ABCD is a rectangle.

Prove that , Of any two chords of a circle, show that the one which is nearer to the centre is larger.

AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD arediameters, (ii) ABCD is a rectangle

PQ and RQ are chords of a circle equidistant from the centre. Prove that the diameter passing through Q bisects ∠PQR and ∠PSR

AB and CD are two parallel chords of a circle on opposite sides of a diameter such that AB = 24 cm and CD = 10 cm. If the radius of the circle is 13 cm, find the distance between the two chords.

Prove that the right bisector of a chord of a circle, bisects the corresponding arc or the circle.

Prove that the right bisector of a chord of a circle, bisects the corresponding arc or the circle.

Prove that all the chords of a circle through a given point within it, the least is one which is bisected at that point.

NAGEEN PRAKASHAN ENGLISH-CIRCLE -Exercise 10a
  1. In the adjoining figure O is the centre of circle and c is the mid poi...

    Text Solution

    |

  2. (i) Find the length of a chord which is at a distance of 12 cm from th...

    Text Solution

    |

  3. A chord of length 24 cm is at a distance of 5 cm form the centre of th...

    Text Solution

    |

  4. In the adjoining figure, AP=8cm, BP=2cm and angle CPA=90^@. Find the l...

    Text Solution

    |

  5. The height of circular arc ACB is 0.6 m. if the radius of circle is 3m...

    Text Solution

    |

  6. In the adjoining figure, 'O' is the centre of the circle. OL and OM ar...

    Text Solution

    |

  7. In the adjoining figure,O is the centre of two concentric circles. The...

    Text Solution

    |

  8. The length of common chord of two intersecting circles is 30 cm. If th...

    Text Solution

    |

  9. In the adjoining figure, chord AB= chord PQ. If angleOBA=55^@, then fi...

    Text Solution

    |

  10. Show that if two chords of a circle bisect one another they must be ...

    Text Solution

    |

  11. Two congruent circles intersect each other at points A and B. Through...

    Text Solution

    |

  12. If the two equal chords of a circle intersect : (i) inside (ii) on...

    Text Solution

    |

  13. prove that the line joining the mid-point of two equal chords of a ...

    Text Solution

    |

  14. If two circles intersect in two points, prove that the line through th...

    Text Solution

    |

  15. Two parallel chords of a circle , 12 cm and 16 cm long are on the sam...

    Text Solution

    |

  16. The diameter of a circle is 20 cm. There are two parallel chords of le...

    Text Solution

    |

  17. In the adjoining figure ,AB and CD are two parallel chords of a circle...

    Text Solution

    |

  18. The length of two parallel chords of a circle are 6 cm and 8 cm . The ...

    Text Solution

    |

  19. What happen to area of circle, if its radius is doubled?

    Text Solution

    |

  20. Name the shape shown in centre of our national flag. In how many parts...

    Text Solution

    |