Home
Class 11
MATHS
Find the centre and radius of each of th...

Find the centre and radius of each of the following circle :
(i) `x^(2)+y^(2)+4x-4y+1=0`
(ii) `2x^(2)+2y^(2)-6x+6y+1=0`
(iii) `2x^(2)+2y^(2)=3k(x+k)`
(iv) `3x^(2)+3y^(2)-5x-6y+4=0`
(v) `x^(2)+y^(2)-2ax-2by+a^(2)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the center and radius of each of the given circles, we will use the standard form of the equation of a circle, which is: \[ x^2 + y^2 + 2gx + 2fy + c = 0 \] From this equation: - The center of the circle is given by the coordinates \((-g, -f)\). - The radius of the circle is given by \(r = \sqrt{g^2 + f^2 - c}\). Now, let's solve each part step by step. ### (i) \(x^2 + y^2 + 4x - 4y + 1 = 0\) 1. Identify coefficients: - Coefficient of \(x\) is \(4\) (so \(2g = 4\) → \(g = 2\)) - Coefficient of \(y\) is \(-4\) (so \(2f = -4\) → \(f = -2\)) - Constant term \(c = 1\) 2. Find the center: \[ \text{Center} = (-g, -f) = (-2, 2) \] 3. Find the radius: \[ r = \sqrt{g^2 + f^2 - c} = \sqrt{2^2 + (-2)^2 - 1} = \sqrt{4 + 4 - 1} = \sqrt{7} \] ### (ii) \(2x^2 + 2y^2 - 6x + 6y + 1 = 0\) 1. Divide the entire equation by \(2\): \[ x^2 + y^2 - 3x + 3y + \frac{1}{2} = 0 \] 2. Identify coefficients: - Coefficient of \(x\) is \(-3\) (so \(2g = -3\) → \(g = -\frac{3}{2}\)) - Coefficient of \(y\) is \(3\) (so \(2f = 3\) → \(f = \frac{3}{2}\)) - Constant term \(c = \frac{1}{2}\) 3. Find the center: \[ \text{Center} = \left(-\left(-\frac{3}{2}\right), -\frac{3}{2}\right) = \left(\frac{3}{4}, -\frac{3}{4}\right) \] 4. Find the radius: \[ r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2 - \frac{1}{2}} = \sqrt{\frac{9}{4} + \frac{9}{4} - \frac{1}{2}} = \sqrt{\frac{18}{4} - \frac{2}{4}} = \sqrt{\frac{16}{4}} = 2 \] ### (iii) \(2x^2 + 2y^2 = 3kx + k\) 1. Rearranging gives: \[ 2x^2 + 2y^2 - 3kx - k = 0 \] 2. Divide the entire equation by \(2\): \[ x^2 + y^2 - \frac{3k}{2}x - \frac{k}{2} = 0 \] 3. Identify coefficients: - Coefficient of \(x\) is \(-\frac{3k}{2}\) (so \(g = -\frac{3k}{4}\)) - Coefficient of \(y\) is \(0\) (so \(f = 0\)) - Constant term \(c = -\frac{k}{2}\) 4. Find the center: \[ \text{Center} = \left(-\left(-\frac{3k}{4}\right), 0\right) = \left(\frac{3k}{4}, 0\right) \] 5. Find the radius: \[ r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{3k}{4}\right)^2 + 0^2 - \left(-\frac{k}{2}\right)} = \sqrt{\frac{9k^2}{16} + \frac{k}{2}} = \sqrt{\frac{9k^2 + 8k}{16}} = \frac{\sqrt{9k^2 + 8k}}{4} \] ### (iv) \(3x^2 + 3y^2 - 5x - 6y + 4 = 0\) 1. Divide the entire equation by \(3\): \[ x^2 + y^2 - \frac{5}{3}x - 2y + \frac{4}{3} = 0 \] 2. Identify coefficients: - Coefficient of \(x\) is \(-\frac{5}{3}\) (so \(g = -\frac{5}{6}\)) - Coefficient of \(y\) is \(-2\) (so \(f = -1\)) - Constant term \(c = \frac{4}{3}\) 3. Find the center: \[ \text{Center} = \left(-\left(-\frac{5}{6}\right), -(-1)\right) = \left(\frac{5}{6}, 1\right) \] 4. Find the radius: \[ r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{5}{6}\right)^2 + (-1)^2 - \frac{4}{3}} = \sqrt{\frac{25}{36} + 1 - \frac{4}{3}} = \sqrt{\frac{25}{36} + \frac{36}{36} - \frac{48}{36}} = \sqrt{\frac{13}{36}} = \frac{\sqrt{13}}{6} \] ### (v) \(x^2 + y^2 - 2ax - 2by + a^2 = 0\) 1. Identify coefficients: - Coefficient of \(x\) is \(-2a\) (so \(g = -a\)) - Coefficient of \(y\) is \(-2b\) (so \(f = -b\)) - Constant term \(c = a^2\) 2. Find the center: \[ \text{Center} = (a, b) \] 3. Find the radius: \[ r = \sqrt{g^2 + f^2 - c} = \sqrt{(-a)^2 + (-b)^2 - a^2} = \sqrt{a^2 + b^2 - a^2} = \sqrt{b^2} = |b| \] ### Summary of Results: - (i) Center: \((-2, 2)\), Radius: \(\sqrt{7}\) - (ii) Center: \(\left(\frac{3}{4}, -\frac{3}{4}\right)\), Radius: \(2\) - (iii) Center: \(\left(\frac{3k}{4}, 0\right)\), Radius: \(\frac{\sqrt{9k^2 + 8k}}{4}\) - (iv) Center: \(\left(\frac{5}{6}, 1\right)\), Radius: \(\frac{\sqrt{13}}{6}\) - (v) Center: \((a, b)\), Radius: \(|b|\)
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11B|19 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11C|22 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Example|3 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos

Similar Questions

Explore conceptually related problems

Find the centre and radius of each of the following circle: x^2+y^2-4x+6y=5

Find'the centre and radius of the circle (i) x^(2) +y^(2) + 4x - 1 = 0 (ii) 2 x^(2) + 2y^(2) = 3x - 5y + 7

Find the centre and radius of the the circles: x^2 +y^2 - 4x-6y-14=0

Find the centre and radius of each of the circles whose equations are given below: (i) 3x^(2)+3y^(2)-5x-6y+4=0 (ii) 3x^(2)+3y^(2)+6x-12-1=0 (iii) x^(2)+y^(2)+6x+8y-96=0 (iv) 2x^(2)+2y^(2)-4x+6y-3=0 (v) 2x^(2)+2y^(2)-3x+2y-1=0 (vi) x^(2)+y^(2)+2x-4y-4=0 (vii) x^(2)+y^(2)-4x-8y-41=0

Find the centre and radius of the circle x^(2) + y^(2) - 6x + 4y - 12 =0 .

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0

Find the centre and radius of the circle 3x^(2) +3y^(2) - 6x +9y - 8 =0 .

Find the equation of the radical axis of the following circles. x^2+y^2-2x-4y-1=0 x^2+y^2-4x-6y+5=0

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Find the transverse common tangents of the circles x^(2) + y^(2) -4x -10y + 28 = 0 and x^(2) + y^(2) + 4x - 6y + 4= 0.

NAGEEN PRAKASHAN ENGLISH-CONIC SECTION-Exercise 11A
  1. Find the equation of a circle which touches the Y-axis and whose centr...

    Text Solution

    |

  2. (i) Find the equation of a circle which touches both the axes and whos...

    Text Solution

    |

  3. Find the centre and radius of each of the following circle : (i) x^(...

    Text Solution

    |

  4. Find the diameter of the circle 2x^(2)+2y^(2)-6x-9=0.

    Text Solution

    |

  5. Prove that the radii of the circles x^(2)+y^(2)=1,x^(2)+y^(2)-2x-4y-11...

    Text Solution

    |

  6. Show that the circles x^2+y^2-10 x+4y-20=0 and x^2+y^2+14 x-6y+22=0 to...

    Text Solution

    |

  7. Prove that the circles x^(2)+y^(2)+2ax+ay-3a^(2)=0andx^(2)+y^(2)-8ax-6...

    Text Solution

    |

  8. If the circles x^(2)+y^(2)+2ax+c=0andx^(2)+y^(2)+2by+c=0 touch each o...

    Text Solution

    |

  9. (i) Find the point at which the circle x^(2)+y^(2)-5x+2y+6=0, meets th...

    Text Solution

    |

  10. (i) Find the equation of a circle concentric with the circle x^(2)+y^(...

    Text Solution

    |

  11. Find the distance between the centres of the circles x^(2)+y^(2)+8x+10...

    Text Solution

    |

  12. Find the equations of the circles the end points of whose diameter are...

    Text Solution

    |

  13. The end points of a diameter of a circle are (1,-1) and (3,5). Find th...

    Text Solution

    |

  14. Find the equation of a circle passes through the origin and cuts 'a' i...

    Text Solution

    |

  15. Show that equations of a circle with end points of diameter (x(1),y(1)...

    Text Solution

    |

  16. Find the equation of a circle whose centre is (2,-1) and touches the l...

    Text Solution

    |

  17. Find the equation of circle with Centre C (1,- 3) and tangent to 2 x ...

    Text Solution

    |

  18. Find the equation of circle passing through the point (2,1), (1,2) and...

    Text Solution

    |

  19. Find the equation of the circle which passes through the points (3,-2)...

    Text Solution

    |

  20. Find the equation of the circle passing through the points (1,-2)a ...

    Text Solution

    |