Home
Class 11
MATHS
Find the point on the parabola y^(2)=12x...

Find the point on the parabola `y^(2)=12x` at which ordinate is 3 times its abscissa.

Text Solution

Verified by Experts

The correct Answer is:
(0,0), `((4)/(3),4)`
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11C|22 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11D|14 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11A|37 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos

Similar Questions

Explore conceptually related problems

Find the point on the parabola y^(2)=18x at which ordinate is 3 times its abscissa.

The co-ordinates of a point on the parabola y^(2)=8x whose ordinate is twice of abscissa, is :

A point on the parabola y^2=18 x at which the ordinate increases at twice the rate of the abscissa is (a)(2,6) (b) (2,-6) (c) (9/8,-9/2) (d) (9/8,9/2)

A point on the parabola y^2=18 x at which the ordinate increases at twice the rate of the abscissa is (a) (2,6) (b) (2,-6) (9/8,-9/2) (d) (9/8,9/2)

The area of the triangle formed by the lines joining the focus of the parabola y^(2) = 12x to the points on it which have abscissa 12 are

A point A is at a distance of sqrt10 unit from the point (4,3). Find the co-ordinates of the point A, if its ordinate is twice its abscissa.

A particle moves along the curve 6y = x^3 + 2 . Find the points on the curve at which y-co-ordinate is changing 8 times as fast as the x-co-ordinate.

Find a point on the curve y^(2)=2x at which the abscissa and ordinates are increasing at the same rate.

Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.

Find the area of the triangle formed by the lines joining the focus of the parabola y^(2) = 4x to the points on it which have abscissa equal to 16.

NAGEEN PRAKASHAN ENGLISH-CONIC SECTION-Exercise 11B
  1. Find the equation of that parabol whose : (i) vertex is (0,0) and fo...

    Text Solution

    |

  2. Find the vertex and axis of the parabola x^(2)-4x-3y+7=0.

    Text Solution

    |

  3. Find the point on the parabola y^(2)=18x at which ordinate is 3 times ...

    Text Solution

    |

  4. Find the point on the parabola y^(2)=12x at which ordinate is 3 times ...

    Text Solution

    |

  5. The equations of the parabolas the extremities of whose latus rectum a...

    Text Solution

    |

  6. Find the coordinates of a point on the parabola y^(2)=8x, whose focal ...

    Text Solution

    |

  7. Find the co-ordinates of the points lying on parabola y^(2)=16x whose ...

    Text Solution

    |

  8. Find the co-ordinates of the points lying on parabola x^(2)=12y whose ...

    Text Solution

    |

  9. If the parabola y^(2)=4ax passes through the point (2,-3) then find th...

    Text Solution

    |

  10. Prove that the locus of mid-point of focal chords of parabola y^(2)=4a...

    Text Solution

    |

  11. Show that y=ax^(2)+bx+c represents a parabola. Also find equation it...

    Text Solution

    |

  12. Find the length of latus rectum of the parabola x^(2)=4x-4y.

    Text Solution

    |

  13. Show that the equation (1)/(x+y-a)+(1)/(x-y+a)+(1)/(y-x+a)=0 repre...

    Text Solution

    |

  14. Find the position of the following points with respect to the parabola...

    Text Solution

    |

  15. Prove that the equation of the parabola whose vertex and focus are on ...

    Text Solution

    |

  16. Find the equation of that focal chord of the parabola y^(2)=8x whose m...

    Text Solution

    |

  17. Find the area of the triangle formed by the vertex and the ends of the...

    Text Solution

    |

  18. If the point (at^2,2at) be the extremity of a focal chord of parabola ...

    Text Solution

    |

  19. Prove that the semi-latusrectum of the parabola y^2=4ax is the harmoni...

    Text Solution

    |