Home
Class 11
MATHS
Find the coordinate of the foci, vertice...

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola
`49y ^(2) - 16x ^(2) = 784`

Text Solution

Verified by Experts

Equation of hyperbola
`49y^(2)-16x^(2)=784`
`rArr" "(y^(2))/(16)-(x^(2))/(49)=1`
The transverse axis of hyperbola is along y-axis.
Comparing with `(y^(2))/(b^(2))-(x^(2))/(a^(2))=1`
`b^(2)=16," "a^(2)=49`
`rArrb=4," "a=7`
`:. "Vertices"-=(0,pmb)-=(0,pm4)`
Eccentricity `e=sqrt(1+(a^(2))/(b^(2)))`
`=sqrt(1+(49)/(16))=sqrt((65)/16)=sqrt((65)/4)`
Now, `be4xx=(sqrt(65))/(4)=sqrt(65)`
`:. "Coordinates of foci"-=(0,pmbe)-=(0,pmsqrt(65))`
Length of latus latus rectum `=(2a^(2))/(b)=(2xx49)/(4)=(49)/(2)`
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11.3|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos

Similar Questions

Explore conceptually related problems

Find the coordinate of the foci, vertices, eccentricity and the length of the latus rectum of the hyperbola 9y ^(2) - 4x ^(2) = 36

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola (y ^(2))/(9) - (x ^(2))/(27) =1

Find the co-ordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola y^(2) - 25x^(2) = 25 .

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 49 y^2-16 x^2=784

Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola 16x^(2)-9y^(2)=576

Find the coordinate of the foci, coordinate of the vertices, eccentricity and the length of the latus rectum of the hyperbola 16x ^(2) - 9y ^(2) =576

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 5y^2-9x^2=36

The length of the latus rectum of the hyperbola x^(2) -4y^(2) =4 is

The length of the latus rectum of the hyperbola 25x^(2)-16y^(2)=400 is

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 16 x^2-9y^2=576