Home
Class 11
MATHS
lim(x to -1) (x^(8)+x^(4)-2)/(x-5)...

`lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to -1} \frac{x^8 + x^4 - 2}{x - 5} \), we will follow these steps: ### Step 1: Substitute \( x = -1 \) into the function We start by substituting \( x = -1 \) into the expression: \[ \frac{(-1)^8 + (-1)^4 - 2}{-1 - 5} \] ### Step 2: Calculate the numerator Now, we calculate the numerator: \[ (-1)^8 = 1, \quad (-1)^4 = 1 \] Thus, the numerator becomes: \[ 1 + 1 - 2 = 0 \] ### Step 3: Calculate the denominator Next, we calculate the denominator: \[ -1 - 5 = -6 \] ### Step 4: Form the limit expression Now we can form the limit expression: \[ \frac{0}{-6} = 0 \] ### Step 5: Conclude the limit Since we have obtained a finite value, we conclude that: \[ \lim_{x \to -1} \frac{x^8 + x^4 - 2}{x - 5} = 0 \] ### Final Answer Thus, the limit is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

Evaluate lim_(x to 4) (x^(5) - 1024)/(x - 5)

Evaluate the following limits : Lim_(x to 1) (x^(4) - 3x^(3) +2)/(x^(3)-5x^(2)+3x+1)

Match the following : {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

lim_(x to2)((x^(3)-8)/(x^(4)-16))=