Home
Class 11
MATHS
lim(xrarr2) (3x^(2)-x-10)/(x^(2)-4)...

`lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4} \), we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we will substitute \( x = 2 \) directly into the expression: \[ \frac{3(2)^2 - 2 - 10}{(2)^2 - 4} \] Calculating the numerator: \[ 3(2^2) - 2 - 10 = 3(4) - 2 - 10 = 12 - 2 - 10 = 0 \] Calculating the denominator: \[ (2^2) - 4 = 4 - 4 = 0 \] So we have: \[ \frac{0}{0} \] This is an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. #### Differentiate the numerator: The numerator is \( 3x^2 - x - 10 \). \[ \text{Derivative of } 3x^2 = 6x \] \[ \text{Derivative of } -x = -1 \] \[ \text{Derivative of } -10 = 0 \] So, the derivative of the numerator is: \[ 6x - 1 \] #### Differentiate the denominator: The denominator is \( x^2 - 4 \). \[ \text{Derivative of } x^2 = 2x \] \[ \text{Derivative of } -4 = 0 \] So, the derivative of the denominator is: \[ 2x \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 2} \frac{6x - 1}{2x} \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the new expression: \[ \frac{6(2) - 1}{2(2)} = \frac{12 - 1}{4} = \frac{11}{4} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4} = \frac{11}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr3) (x^(2)-9)/(x-3)

Evaluate: lim_(xrarr3) (x^(2)-4x+3)/(x^(2)+6x- 27)

lim_(xrarr3) (x^(4)-81)/(2x^(2)-5x- 3)

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)

Evaluate: lim_(xrarr2) (x^(3)-2x^(2))/(x^(2)-5x+6)