Home
Class 11
MATHS
lim(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)...

`lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 6x + 8} \), we will follow these steps: ### Step 1: Substitute the value of \( x \) First, we substitute \( x = 2 \) into the expression to check if we get a determinate form. \[ \text{Numerator: } 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0 \] \[ \text{Denominator: } 2^2 - 6(2) + 8 = 4 - 12 + 8 = 0 \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. **Differentiate the numerator:** \[ \frac{d}{dx}(x^2 - 5x + 6) = 2x - 5 \] **Differentiate the denominator:** \[ \frac{d}{dx}(x^2 - 6x + 8) = 2x - 6 \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 2} \frac{2x - 5}{2x - 6} \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the new limit expression: \[ \frac{2(2) - 5}{2(2) - 6} = \frac{4 - 5}{4 - 6} = \frac{-1}{-2} \] ### Step 5: Simplify the expression Now we simplify the fraction: \[ \frac{-1}{-2} = \frac{1}{2} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 6x + 8} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr3) (x^(4)-81)/(2x^(2)-5x- 3)

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)

Evaluate: lim_(xrarr3) (x^(2)-4x+3)/(x^(2)+6x- 27)

Evaluate: lim_(xrarr2) (x^(3)-2x^(2))/(x^(2)-5x+6)

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)