Home
Class 11
MATHS
lim(xrarr2) (sqrt(3-x)-1)/(2-x)...

`lim_(xrarr2) (sqrt(3-x)-1)/(2-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 2} \frac{\sqrt{3-x} - 1}{2-x} \), we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 2 \) into the expression: \[ \frac{\sqrt{3-2} - 1}{2-2} = \frac{\sqrt{1} - 1}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \), which means we need to apply L'Hôpital's Rule. **Hint:** When you encounter \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), consider using L'Hôpital's Rule. ### Step 2: Differentiate the numerator and denominator According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. - The numerator is \( \sqrt{3-x} - 1 \). The derivative is: \[ \frac{d}{dx}(\sqrt{3-x}) = \frac{1}{2\sqrt{3-x}} \cdot (-1) = -\frac{1}{2\sqrt{3-x}} \] - The denominator is \( 2-x \). The derivative is: \[ \frac{d}{dx}(2-x) = -1 \] Now we can rewrite the limit using these derivatives: \[ \lim_{x \to 2} \frac{-\frac{1}{2\sqrt{3-x}}}{-1} = \lim_{x \to 2} \frac{1}{2\sqrt{3-x}} \] **Hint:** Remember to differentiate both the numerator and denominator when applying L'Hôpital's Rule. ### Step 3: Substitute the limit value again Now, we substitute \( x = 2 \) into the new limit expression: \[ \lim_{x \to 2} \frac{1}{2\sqrt{3-x}} = \frac{1}{2\sqrt{3-2}} = \frac{1}{2\sqrt{1}} = \frac{1}{2 \cdot 1} = \frac{1}{2} \] **Hint:** After differentiating, always substitute the limit value again to find the final answer. ### Final Answer Thus, the limit is: \[ \boxed{1} \] **Note:** The final answer mentioned in the video transcript is incorrect; the correct limit is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

The value of lim_(xrarr2)(e^(3x-6)-1)/(sin(2-x)) , is

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

Evaluate lim_(xrarr5) (1-sqrt(x-4))/(x-5)

Evaluate: lim_(xrarr1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3)

lim_(xrarr0) (sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)?

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)