Home
Class 11
MATHS
lim(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x...

`lim_(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x + 2} - \sqrt{3x - 2}} \), we can follow these steps: ### Step 1: Substitute \( x = 2 \) First, we substitute \( x = 2 \) into the expression to check if it results in an indeterminate form. \[ \text{Numerator: } x^2 - 4 = 2^2 - 4 = 4 - 4 = 0 \] \[ \text{Denominator: } \sqrt{x + 2} - \sqrt{3x - 2} = \sqrt{2 + 2} - \sqrt{3(2) - 2} = \sqrt{4} - \sqrt{6 - 2} = 2 - 2 = 0 \] Since both the numerator and denominator evaluate to 0, we have the indeterminate form \( \frac{0}{0} \). **Hint:** Check if substituting the limit value gives an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. **Numerator:** \[ \frac{d}{dx}(x^2 - 4) = 2x \] **Denominator:** To differentiate the denominator \( \sqrt{x + 2} - \sqrt{3x - 2} \), we use the chain rule: \[ \frac{d}{dx}(\sqrt{x + 2}) = \frac{1}{2\sqrt{x + 2}} \cdot 1 = \frac{1}{2\sqrt{x + 2}} \] \[ \frac{d}{dx}(\sqrt{3x - 2}) = \frac{1}{2\sqrt{3x - 2}} \cdot 3 = \frac{3}{2\sqrt{3x - 2}} \] Thus, the derivative of the denominator is: \[ \frac{1}{2\sqrt{x + 2}} - \frac{3}{2\sqrt{3x - 2}} \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 2} \frac{2x}{\frac{1}{2\sqrt{x + 2}} - \frac{3}{2\sqrt{3x - 2}}} \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the new expression: \[ \text{Numerator: } 2(2) = 4 \] \[ \text{Denominator: } \frac{1}{2\sqrt{2 + 2}} - \frac{3}{2\sqrt{3(2) - 2}} = \frac{1}{2\sqrt{4}} - \frac{3}{2\sqrt{4}} = \frac{1}{4} - \frac{3}{4} = -\frac{2}{4} = -\frac{1}{2} \] ### Step 5: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 2} \frac{4}{-\frac{1}{2}} = 4 \cdot -2 = -8 \] ### Final Answer Thus, the limit is: \[ \boxed{-8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(6-x))

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

lim_(xrarr0) (x^(2)-3x+2)

lim_(x rarr 3)(x-3)/(sqrt(x-2)-sqrt(4-x))

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr2)(x^3-8)/(sin(x-2))