Home
Class 11
MATHS
lim(xrarr0) (sin 3 x)/(2x)...

`lim_(xrarr0) (sin 3 x)/(2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin 3x}{2x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin 3x}{2x} \] ### Step 2: Multiply by a factor to simplify To simplify the expression, we can multiply the numerator and the denominator by 3: \[ \lim_{x \to 0} \frac{\sin 3x}{2x} = \lim_{x \to 0} \frac{3 \sin 3x}{6x} \] ### Step 3: Use the standard limit Now, we can separate the limit: \[ \lim_{x \to 0} \frac{3 \sin 3x}{6x} = \frac{3}{6} \lim_{x \to 0} \frac{\sin 3x}{3x} \] This simplifies to: \[ \frac{1}{2} \lim_{x \to 0} \frac{\sin 3x}{3x} \] ### Step 4: Apply the standard limit result We know from calculus that: \[ \lim_{u \to 0} \frac{\sin u}{u} = 1 \] In our case, as \( x \to 0 \), \( 3x \to 0 \). Thus: \[ \lim_{x \to 0} \frac{\sin 3x}{3x} = 1 \] ### Step 5: Substitute back into the limit Now substituting this result back into our expression gives: \[ \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx)/(x)= ?

Statement -1 : lim_(xrarralpha) sqrt(1-cos 2(x-alpha))/(x-alpha) does not exist. Statement-2 : lim_(xrarr0) (|sin x|)/(x) does not exist.

Evaluate the limit ("lim")_(xrarr0)(sin3x)/x

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0)x sec x

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

Evaluate: lim_(xrarr0)(sin5x)/(tan3x) .

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is