Home
Class 11
MATHS
lim(xrarr0)(sin(x)/(4))/(x)...

`lim_(xrarr0)(sin(x)/(4))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x)/4}{x} \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Limit:** We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(x)}{4x} \] 2. **Factor Out the Constant:** Since \( \frac{1}{4} \) is a constant, we can factor it out of the limit: \[ \lim_{x \to 0} \frac{\sin(x)}{4x} = \frac{1}{4} \lim_{x \to 0} \frac{\sin(x)}{x} \] 3. **Use the Standard Limit Result:** We know from standard calculus that: \[ \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \] Therefore, we can substitute this result into our limit: \[ \frac{1}{4} \lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{4} \cdot 1 \] 4. **Calculate the Final Result:** Thus, we have: \[ \frac{1}{4} \cdot 1 = \frac{1}{4} \] ### Final Answer: The value of the limit is: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx)/(x)= ?

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_(xrarr0) (sin 3 x)/(2x)

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Evaluate the following: lim_(xrarr0) sin^2 (x/2)/(x^2)

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

lim_(xrarr0) ((x+1)^(5)-1)/(x)

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is