Home
Class 11
MATHS
lim(xrarr0) (cos ec x -cot x)...

`lim_(xrarr0) (cos ec x -cot x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \cos x - \cot x \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to 0} \left( \cos x - \cot x \right) \] Recall that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the expression as: \[ \lim_{x \to 0} \left( \cos x - \frac{\cos x}{\sin x} \right) \] ### Step 2: Combine the terms To combine the terms, we need a common denominator. The common denominator here is \( \sin x \): \[ \lim_{x \to 0} \left( \frac{\cos x \sin x - \cos x}{\sin x} \right) \] This simplifies to: \[ \lim_{x \to 0} \frac{\cos x (\sin x - 1)}{\sin x} \] ### Step 3: Evaluate the limit Now, we substitute \( x = 0 \): \[ \frac{\cos(0)(\sin(0) - 1)}{\sin(0)} = \frac{1(0 - 1)}{0} = \frac{-1}{0} \] This is an indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can differentiate the numerator and the denominator: \[ \lim_{x \to 0} \frac{\frac{d}{dx}[\cos x (\sin x - 1)]}{\frac{d}{dx}[\sin x]} \] ### Step 5: Differentiate the numerator and denominator Differentiating the numerator using the product rule: \[ \frac{d}{dx}[\cos x (\sin x - 1)] = -\sin x (\sin x - 1) + \cos x \cos x = -\sin^2 x + \cos^2 x \] The derivative of the denominator is: \[ \frac{d}{dx}[\sin x] = \cos x \] ### Step 6: Substitute back into the limit Now we have: \[ \lim_{x \to 0} \frac{-\sin^2 x + \cos^2 x}{\cos x} \] Substituting \( x = 0 \): \[ \frac{-\sin^2(0) + \cos^2(0)}{\cos(0)} = \frac{0 + 1}{1} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \cos x - \cot x \right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

(i) lim_(xrarrpi) (cos ecx-cotx)/(x) (ii) lim_(xrarr0) (sinx-2sin3x+sin5x)/(x)

lim_(xrarr0)x sec x

lim_(xrarr0)("cosec"x-cotx)/(x) is equal to

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr0)(16-16 cos (1-cos x))/(x^(4)) is _____________

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

Statement -1: lim_(xrarr pi//2 ) (cot x-cosx)/((2x-pi)^3)=-(1)/(16) Statement 2 lim_(xrarr0) (tanx-sinx)/(x^3)=(1)/(2)

lim_(xrarr0)((1-cos x)/x^2)

lim_( xrarr0) (1-cosx)/(x^(2))