Home
Class 11
MATHS
lim(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-...

`lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \left( \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \] ### Step 2: Factor the denominators The denominator \( x^2 - x \) can be factored as: \[ x^2 - x = x(x-1) \] The denominator \( x^3 - 3x^2 + 2x \) can be factored as: \[ x^3 - 3x^2 + 2x = x(x^2 - 3x + 2) = x(x-1)(x-2) \] ### Step 3: Rewrite the limit with factored denominators Now we can rewrite the limit: \[ \lim_{x \to 1} \left( \frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)} \right) \] ### Step 4: Find a common denominator The common denominator for the two fractions is \( x(x-1)(x-2) \). Rewriting the limit gives: \[ \lim_{x \to 1} \left( \frac{(x-2)(x-2) - 1}{x(x-1)(x-2)} \right) \] This simplifies to: \[ \lim_{x \to 1} \frac{(x-2)^2 - 1}{x(x-1)(x-2)} \] ### Step 5: Simplify the numerator The numerator can be simplified: \[ (x-2)^2 - 1 = (x-2-1)(x-2+1) = (x-3)(x-1) \] Thus, we have: \[ \lim_{x \to 1} \frac{(x-3)(x-1)}{x(x-1)(x-2)} \] ### Step 6: Cancel common factors We can cancel \( (x-1) \) from the numerator and denominator: \[ \lim_{x \to 1} \frac{x-3}{x(x-2)} \] ### Step 7: Substitute \( x = 1 \) Now we substitute \( x = 1 \): \[ \frac{1-3}{1(1-2)} = \frac{-2}{1 \cdot -1} = 2 \] ### Final Answer Thus, the limit is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)

lim_(xrarr4) (4x+3)/(x-2)

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr2) (3x^(2)-x-10)/(x^(2)-4)

lim_(xrarr4)(2x+3)/(x-2)

lim_(xrarr3) (x^(2)-9)/(x-3)

lim_(xrarr3) (x^(4)-81)/(2x^(2)-5x- 3)

NAGEEN PRAKASHAN ENGLISH-LIMITS AND DERIVATIVES-EX-13A
  1. Evaluate: lim xvecoo\ ((sqrt(1+x)\ -\ sqrt(1-x))/(sin^(-1)x))

    Text Solution

    |

  2. lim(xrarr0) (sin ax+bx)/(ax+sin bx),ane0,bne0,a+bne 0

    Text Solution

    |

  3. lim(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

    Text Solution

    |

  4. (i) lim(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim(xrarra) ((1+x)^...

    Text Solution

    |

  5. lim(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)

    Text Solution

    |

  6. lim(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

    Text Solution

    |

  7. lim(xrarroo) (1^(2)+2^(2)+3^(2)+....+x^(2))/(x^3)

    Text Solution

    |

  8. lim(xrarroo) (2x)/(1+4x)

    Text Solution

    |

  9. underset(xrarroo)(1^(2)+2^(2)+3^(2)+...+x^(2))/(X^(3))

    Text Solution

    |

  10. lim(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

    Text Solution

    |

  11. Evaluate : lim(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

    Text Solution

    |

  12. lim(xrarrpi) (sin(pi-x))/(pi(pi-x))

    Text Solution

    |

  13. (i) lim(xrarrpi) (cos ecx-cotx)/(x) (ii) lim(xrarr0) (sinx-2sin3x+si...

    Text Solution

    |

  14. (i) lim(x to 0) (x tan 4x)/(1-cos 4x) (ii) lim(y to 0) ((x+y)sec(x...

    Text Solution

    |

  15. Lim(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

    Text Solution

    |

  16. If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0)...

    Text Solution

    |

  17. If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-...

    Text Solution

    |

  18. If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then...

    Text Solution

    |

  19. If f(x)=(|x|)/(x), then show that lim(xrarr0) f(x) does not exist.

    Text Solution

    |

  20. If f(x)=(|x-a|)/(x-a), then show that lim(xrarra) f(x) does not exist...

    Text Solution

    |