Home
Class 11
MATHS
lim(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+...

`lim_(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit as \( x \) approaches infinity for the expression \[ \lim_{x \to \infty} \frac{x^3 + 3x^2 + 6x + 5}{x^3 + x + 2} \] we can follow these steps: ### Step 1: Identify the highest power of \( x \) In both the numerator and the denominator, the highest power of \( x \) is \( x^3 \). ### Step 2: Divide each term by \( x^3 \) To simplify the expression, divide every term in the numerator and the denominator by \( x^3 \): \[ \lim_{x \to \infty} \frac{\frac{x^3}{x^3} + \frac{3x^2}{x^3} + \frac{6x}{x^3} + \frac{5}{x^3}}{\frac{x^3}{x^3} + \frac{x}{x^3} + \frac{2}{x^3}} \] This simplifies to: \[ \lim_{x \to \infty} \frac{1 + \frac{3}{x} + \frac{6}{x^2} + \frac{5}{x^3}}{1 + \frac{1}{x^2} + \frac{2}{x^3}} \] ### Step 3: Evaluate the limit as \( x \) approaches infinity As \( x \) approaches infinity, the terms \( \frac{3}{x} \), \( \frac{6}{x^2} \), \( \frac{5}{x^3} \), \( \frac{1}{x^2} \), and \( \frac{2}{x^3} \) all approach \( 0 \). Therefore, we can simplify the limit to: \[ \lim_{x \to \infty} \frac{1 + 0 + 0 + 0}{1 + 0 + 0} = \frac{1}{1} \] ### Step 4: Conclusion Thus, the limit is: \[ \lim_{x \to \infty} \frac{x^3 + 3x^2 + 6x + 5}{x^3 + x + 2} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

Evaluate: lim_(xrarr2) (x^(3)-2x^(2))/(x^(2)-5x+6)

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)

Evaluate: lim_(xrarroo) (5x^(2)+3x+1)/(3x^(2)+2x+4)

Find the following: lim_(xrarroo)(x^2-3x+2)/(x^3+3x)

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

NAGEEN PRAKASHAN ENGLISH-LIMITS AND DERIVATIVES-EX-13A
  1. lim(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

    Text Solution

    |

  2. (i) lim(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim(xrarra) ((1+x)^...

    Text Solution

    |

  3. lim(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)

    Text Solution

    |

  4. lim(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

    Text Solution

    |

  5. lim(xrarroo) (1^(2)+2^(2)+3^(2)+....+x^(2))/(x^3)

    Text Solution

    |

  6. lim(xrarroo) (2x)/(1+4x)

    Text Solution

    |

  7. underset(xrarroo)(1^(2)+2^(2)+3^(2)+...+x^(2))/(X^(3))

    Text Solution

    |

  8. lim(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

    Text Solution

    |

  9. Evaluate : lim(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

    Text Solution

    |

  10. lim(xrarrpi) (sin(pi-x))/(pi(pi-x))

    Text Solution

    |

  11. (i) lim(xrarrpi) (cos ecx-cotx)/(x) (ii) lim(xrarr0) (sinx-2sin3x+si...

    Text Solution

    |

  12. (i) lim(x to 0) (x tan 4x)/(1-cos 4x) (ii) lim(y to 0) ((x+y)sec(x...

    Text Solution

    |

  13. Lim(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

    Text Solution

    |

  14. If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0)...

    Text Solution

    |

  15. If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-...

    Text Solution

    |

  16. If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then...

    Text Solution

    |

  17. If f(x)=(|x|)/(x), then show that lim(xrarr0) f(x) does not exist.

    Text Solution

    |

  18. If f(x)=(|x-a|)/(x-a), then show that lim(xrarra) f(x) does not exist...

    Text Solution

    |

  19. If f(x) is defined as f(x)={{:(x,0le,xle1),(1,x,=1),(2-x,x,gt1):} ...

    Text Solution

    |

  20. If f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):} and underset(xrarr1)f(x...

    Text Solution

    |