Home
Class 11
MATHS
lim(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(...

`lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 - 3}}{4x + 3} \), we can follow these steps: ### Step 1: Factor out \( x \) from the square roots in the numerator We start by rewriting the square roots in the numerator: \[ \sqrt{3x^2 - 1} = \sqrt{x^2(3 - \frac{1}{x^2})} = x\sqrt{3 - \frac{1}{x^2}} \] \[ \sqrt{2x^2 - 3} = \sqrt{x^2(2 - \frac{3}{x^2})} = x\sqrt{2 - \frac{3}{x^2}} \] Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} \frac{x\sqrt{3 - \frac{1}{x^2}} - x\sqrt{2 - \frac{3}{x^2}}}{4x + 3} \] ### Step 2: Simplify the expression Now, we can factor \( x \) out of the numerator: \[ = \lim_{x \to \infty} \frac{x(\sqrt{3 - \frac{1}{x^2}} - \sqrt{2 - \frac{3}{x^2}})}{4x + 3} \] ### Step 3: Factor out \( x \) from the denominator We can also factor \( x \) out of the denominator: \[ = \lim_{x \to \infty} \frac{x(\sqrt{3 - \frac{1}{x^2}} - \sqrt{2 - \frac{3}{x^2}})}{x(4 + \frac{3}{x})} \] ### Step 4: Cancel \( x \) from numerator and denominator Now we can cancel \( x \) (assuming \( x \neq 0 \)): \[ = \lim_{x \to \infty} \frac{\sqrt{3 - \frac{1}{x^2}} - \sqrt{2 - \frac{3}{x^2}}}{4 + \frac{3}{x}} \] ### Step 5: Evaluate the limit as \( x \to \infty \) As \( x \) approaches infinity, the terms \( \frac{1}{x^2} \) and \( \frac{3}{x} \) approach 0: \[ = \frac{\sqrt{3 - 0} - \sqrt{2 - 0}}{4 + 0} = \frac{\sqrt{3} - \sqrt{2}}{4} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 - 3}}{4x + 3} = \frac{\sqrt{3} - \sqrt{2}}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13B|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) (sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Evaluate: ("lim")_(xvecoo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

Evaluate the following limits : Lim_(x to oo )( sqrt(x^(2)+5x+4)-sqrt(x^(2)-3x+4))

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

Evaluate the following limits : Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

NAGEEN PRAKASHAN ENGLISH-LIMITS AND DERIVATIVES-EX-13A
  1. lim(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

    Text Solution

    |

  2. (i) lim(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim(xrarra) ((1+x)^...

    Text Solution

    |

  3. lim(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)

    Text Solution

    |

  4. lim(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

    Text Solution

    |

  5. lim(xrarroo) (1^(2)+2^(2)+3^(2)+....+x^(2))/(x^3)

    Text Solution

    |

  6. lim(xrarroo) (2x)/(1+4x)

    Text Solution

    |

  7. underset(xrarroo)(1^(2)+2^(2)+3^(2)+...+x^(2))/(X^(3))

    Text Solution

    |

  8. lim(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

    Text Solution

    |

  9. Evaluate : lim(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

    Text Solution

    |

  10. lim(xrarrpi) (sin(pi-x))/(pi(pi-x))

    Text Solution

    |

  11. (i) lim(xrarrpi) (cos ecx-cotx)/(x) (ii) lim(xrarr0) (sinx-2sin3x+si...

    Text Solution

    |

  12. (i) lim(x to 0) (x tan 4x)/(1-cos 4x) (ii) lim(y to 0) ((x+y)sec(x...

    Text Solution

    |

  13. Lim(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

    Text Solution

    |

  14. If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0)...

    Text Solution

    |

  15. If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-...

    Text Solution

    |

  16. If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then...

    Text Solution

    |

  17. If f(x)=(|x|)/(x), then show that lim(xrarr0) f(x) does not exist.

    Text Solution

    |

  18. If f(x)=(|x-a|)/(x-a), then show that lim(xrarra) f(x) does not exist...

    Text Solution

    |

  19. If f(x) is defined as f(x)={{:(x,0le,xle1),(1,x,=1),(2-x,x,gt1):} ...

    Text Solution

    |

  20. If f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):} and underset(xrarr1)f(x...

    Text Solution

    |