Home
Class 11
MATHS
If f(x)=x^(2)-4 then find f'(2)....

If `f(x)=x^(2)-4` then find f'(2).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(2) \) for the function \( f(x) = x^2 - 4 \), we will use the definition of the derivative: \[ f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \] In this case, \( a = 2 \). ### Step 1: Calculate \( f(2) \) First, we need to find \( f(2) \): \[ f(2) = 2^2 - 4 = 4 - 4 = 0 \] ### Step 2: Substitute into the derivative formula Now we substitute \( f(2) \) into the derivative formula: \[ f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{f(x) - 0}{x - 2} = \lim_{x \to 2} \frac{f(x)}{x - 2} \] ### Step 3: Substitute \( f(x) \) Next, we substitute \( f(x) = x^2 - 4 \): \[ f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} \] ### Step 4: Factor the numerator Notice that \( x^2 - 4 \) can be factored as a difference of squares: \[ x^2 - 4 = (x - 2)(x + 2) \] So we can rewrite the limit: \[ f'(2) = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} \] ### Step 5: Cancel the common terms We can cancel \( x - 2 \) from the numerator and the denominator (as long as \( x \neq 2 \)): \[ f'(2) = \lim_{x \to 2} (x + 2) \] ### Step 6: Evaluate the limit Now we can directly substitute \( x = 2 \): \[ f'(2) = 2 + 2 = 4 \] ### Final Answer Thus, the value of \( f'(2) \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13C|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13D|25 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13A|53 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^4-x^3 then find f '(2)

If g(x)=x^(2)+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

If f(x)=A x^2+B x+C then find f '(x)

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f(x)=x^2+2x+7 , find f\ '\ (3) .

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

f(x)=x^(2) . Find f^(-1) .

If f is defined by f(x)=x^2-4x+7 , find f\ '\ (x)

If f(x)=x^(2) , then evaluate : (f(x+1)-f(x-1))/(4x)