Home
Class 11
MATHS
lim(xrarr0) (sinx)/(x)=?...

`lim_(xrarr0) (sinx)/(x)=`?

A

0

B

2

C

`(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin x}{x} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Limit**: We need to evaluate the limit as \( x \) approaches 0 for the function \( \frac{\sin x}{x} \). \[ \lim_{x \to 0} \frac{\sin x}{x} \] 2. **Substitute \( x = 0 \)**: When we substitute \( x = 0 \) into the function, we get: \[ \frac{\sin(0)}{0} = \frac{0}{0} \] This is an indeterminate form, so we cannot directly evaluate the limit. 3. **Apply L'Hôpital's Rule**: Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. This rule states that if the limit results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator separately. 4. **Differentiate the Numerator and Denominator**: - The derivative of the numerator \( \sin x \) is \( \cos x \). - The derivative of the denominator \( x \) is \( 1 \). Therefore, we rewrite the limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} \] 5. **Evaluate the New Limit**: Now we can substitute \( x = 0 \) into the new limit: \[ \cos(0) = 1 \] 6. **Final Result**: Thus, the value of the limit is: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Conclusion: The final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.1|32 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13F|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0)(|sinx|)/(x) is equal to

For xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0)(sin5x)/(x) is equal to

lim_(xrarr0) (sinax)/(sinbx),a,bne0

lim_(xrarr0)x sec x

lim_(xrarr0)(xlogx)

Evaluate: ("lim")_(xrarr0)(sinx^0)/x

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to