Home
Class 11
MATHS
lim(xrarr0) (sin4x-sin2x+x)/(x)=?...

`lim_(xrarr0) (sin4x-sin2x+x)/(x)=?`

A

3

B

4

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin 4x - \sin 2x + x}{x} \), we will follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 0 \) into the expression: \[ \sin(4 \cdot 0) - \sin(2 \cdot 0) + 0 = 0 - 0 + 0 = 0 \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] Here, \( f(x) = \sin(4x) - \sin(2x) + x \) and \( g(x) = x \). ### Step 3: Differentiate the Numerator and Denominator Now, we differentiate the numerator and the denominator: - The derivative of the numerator \( f(x) \): \[ f'(x) = 4\cos(4x) - 2\cos(2x) + 1 \] - The derivative of the denominator \( g(x) \): \[ g'(x) = 1 \] ### Step 4: Evaluate the New Limit Now we evaluate the limit: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} (4\cos(4x) - 2\cos(2x) + 1) \] Substituting \( x = 0 \): \[ = 4\cos(0) - 2\cos(0) + 1 = 4 \cdot 1 - 2 \cdot 1 + 1 = 4 - 2 + 1 = 3 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin 4x - \sin 2x + x}{x} = 3 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.1|32 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13F|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)x sec x

(i) lim_(xrarrpi) (cos ecx-cotx)/(x) (ii) lim_(xrarr0) (sinx-2sin3x+sin5x)/(x)

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (x^(2)-x)/(sinx)