Home
Class 11
MATHS
lim(xrarr-1) (x^(10)+x^(5)+1)/(x-1)...

`lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)`

Text Solution

Verified by Experts

The correct Answer is:
-1/2

`underset(xrarr-1)"lim"(x^(10)+x^(5)+1)/(x-1)`
`=((-1)^(10)+(-1)^(5)+1)/(-1-1)`
`=(1-1+1)/(-2)=-(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((x+1)^(5)-1)/(x)

(lim)_(x->-1)(x^(10)+x^5+1)/(x-1)

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Evaluate: lim_(xrarr1) ((2)/(x^(2)-1)+(1)/(1-x))

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

lim_(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equal to

lim_( xrarr0) (1-cosx)/(x^(2))