Home
Class 11
MATHS
(lim)(z->1)(z^(1/3)-1)/(z^(1/6)-1)...

`(lim)_(z->1)(z^(1/3)-1)/(z^(1/6)-1)`

Text Solution

Verified by Experts

`underset(zrarr1)"lim"(z^(1//3)-1)/(z^(1//6)-1) ((0)/(0))`
`=underset(Zrarr1)"lim"((z^(1//6)^(2)-(1)^(2)))/(z^(1//6)-1)`
`=underset(zrarr1)"lim"((z^(1//6)-1)(z^(1//6)+1))/(z^(1//6)-1)`
`=underset(xrarr1)"lim"(z^(1//6)+1)=1+1= 2`.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

lim_(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(1//3)]^(4)) is

Let z_(1),z_(2) and z_(3) be three non-zero complex numbers and z_(1) ne z_(2) . If |{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0 , prove that (i) z_(1),z_(2),z_(3) lie on a circle with the centre at origin. (ii) arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2) .

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If z_(1), z_(2) and z_(3) are the vertices of a triangle in the argand plane such that |z_(1)-z_(2)|=|z_(1)-z_(3)| , then |arg((2z_(1)-z_(2)-z_(3))/(z_(3)-z_(2)))| is

Let z_(1),z_(2) and z_(3) be three complex number such that |z_(1)-1|= |z_(2) - 1| = |z_(3) -1| and arg ((z_(3) - z_(1))/(z_(2) -z_(1))) = (pi)/(6) then prove that z_(2)^(3) + z_(3)^(3) + 1 = z_(2) + z_(3) + z_(2)z_(3) .

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

If z=(x+1)^(1/6) and intx/((1+x)^(1/3)-sqrt(1+x))dx=a(z^4/4+z^5/5+z^6/6+z^7/7+z^8/8+z^9/9)+c , then |a|= …

, a point 'z' is equidistant from three distinct points z_(1),z_(2) and z_(3) in the Argand plane. If z,z_(1) and z_(2) are collinear, then arg (z(z_(3)-z_(1))/(z_(3)-z_(2))). Will be (z_(1),z_(2),z_(3)) are in anticlockwise sense).