Home
Class 11
MATHS
lim(xrarr1) (ax^(2)+bx+c)/(cx^(2)+bx+a)a...

`lim_(xrarr1) (ax^(2)+bx+c)/(cx^(2)+bx+a)a+b+cne0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} \) given that \( a + b + c \neq 0 \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) into the function We start by substituting \( x = 1 \) into the expression: \[ \frac{a(1)^2 + b(1) + c}{c(1)^2 + b(1) + a} \] ### Step 2: Simplify the expression This simplifies to: \[ \frac{a + b + c}{c + b + a} \] ### Step 3: Evaluate the limit Since both the numerator and the denominator are equal, we have: \[ \frac{a + b + c}{a + b + c} = 1 \] ### Step 4: Conclusion Thus, the limit is: \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} = 1 \] ### Final Answer The limit is \( 1 \). ---

To solve the limit problem \( \lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} \) given that \( a + b + c \neq 0 \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) into the function We start by substituting \( x = 1 \) into the expression: \[ \frac{a(1)^2 + b(1) + c}{c(1)^2 + b(1) + a} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinax)/(bx)

lim_(xrarr0) (ax+b)/(cx+1)

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

lim_(xrarr0) (sinax+bx)/(ax+si nbx),a,b,a+bne0

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

lim_(xrarr0) (sin ax+bx)/(ax+sin bx),ane0,bne0,a+bne 0

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of a is

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is